Files
nanoreth/crates/ethereum-forks/src/forkid.rs
2024-05-02 13:58:17 +00:00

723 lines
27 KiB
Rust

//! EIP-2124 implementation based on <https://eips.ethereum.org/EIPS/eip-2124>.
//!
//! Previously version of Apache licenced [`ethereum-forkid`](https://crates.io/crates/ethereum-forkid).
use crate::Head;
use alloy_primitives::{hex, BlockNumber, B256};
use alloy_rlp::{Error as RlpError, *};
#[cfg(any(test, feature = "arbitrary"))]
use arbitrary::Arbitrary;
use crc::*;
#[cfg(any(test, feature = "arbitrary"))]
use proptest_derive::Arbitrary as PropTestArbitrary;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
use std::{
cmp::Ordering,
collections::{BTreeMap, BTreeSet},
fmt,
ops::{Add, AddAssign},
};
use thiserror::Error;
const CRC_32_IEEE: Crc<u32> = Crc::<u32>::new(&CRC_32_ISO_HDLC);
/// `CRC32` hash of all previous forks starting from genesis block.
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(any(test, feature = "arbitrary"), derive(PropTestArbitrary, Arbitrary))]
#[derive(
Clone, Copy, PartialEq, Eq, Hash, RlpEncodableWrapper, RlpDecodableWrapper, RlpMaxEncodedLen,
)]
pub struct ForkHash(pub [u8; 4]);
impl fmt::Debug for ForkHash {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_tuple("ForkHash").field(&hex::encode(&self.0[..])).finish()
}
}
impl From<B256> for ForkHash {
fn from(genesis: B256) -> Self {
Self(CRC_32_IEEE.checksum(&genesis[..]).to_be_bytes())
}
}
impl<T> AddAssign<T> for ForkHash
where
T: Into<u64>,
{
fn add_assign(&mut self, v: T) {
let blob = v.into().to_be_bytes();
let digest = CRC_32_IEEE.digest_with_initial(u32::from_be_bytes(self.0));
let value = digest.finalize();
let mut digest = CRC_32_IEEE.digest_with_initial(value);
digest.update(&blob);
self.0 = digest.finalize().to_be_bytes();
}
}
impl<T> Add<T> for ForkHash
where
T: Into<u64>,
{
type Output = Self;
fn add(mut self, block: T) -> Self {
self += block;
self
}
}
/// How to filter forks.
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum ForkFilterKey {
/// By block number activation.
Block(BlockNumber),
/// By timestamp activation.
Time(u64),
}
impl PartialOrd for ForkFilterKey {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl Ord for ForkFilterKey {
fn cmp(&self, other: &Self) -> Ordering {
match (self, other) {
(ForkFilterKey::Block(a), ForkFilterKey::Block(b)) |
(ForkFilterKey::Time(a), ForkFilterKey::Time(b)) => a.cmp(b),
(ForkFilterKey::Block(_), ForkFilterKey::Time(_)) => Ordering::Less,
_ => Ordering::Greater,
}
}
}
impl From<ForkFilterKey> for u64 {
fn from(value: ForkFilterKey) -> Self {
match value {
ForkFilterKey::Block(block) => block,
ForkFilterKey::Time(time) => time,
}
}
}
/// A fork identifier as defined by EIP-2124.
/// Serves as the chain compatibility identifier.
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(any(test, feature = "arbitrary"), derive(PropTestArbitrary, Arbitrary))]
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, RlpEncodable, RlpDecodable, RlpMaxEncodedLen)]
pub struct ForkId {
/// CRC32 checksum of the all fork blocks and timestamps from genesis.
pub hash: ForkHash,
/// Next upcoming fork block number or timestamp, 0 if not yet known.
pub next: u64,
}
/// Represents a forward-compatible ENR entry for including the forkid in a node record via
/// EIP-868. Forward compatibility is achieved via EIP-8.
///
/// See:
/// <https://github.com/ethereum/devp2p/blob/master/enr-entries/eth.md#entry-format>
///
/// for how geth implements ForkId values and forward compatibility.
#[derive(Debug, Clone, PartialEq, Eq, RlpEncodable)]
pub struct EnrForkIdEntry {
/// The inner forkid
pub fork_id: ForkId,
}
impl Decodable for EnrForkIdEntry {
// NOTE(onbjerg): Manual implementation to satisfy EIP-8.
//
// See https://eips.ethereum.org/EIPS/eip-8
fn decode(buf: &mut &[u8]) -> alloy_rlp::Result<Self> {
let b = &mut &**buf;
let rlp_head = Header::decode(b)?;
if !rlp_head.list {
return Err(RlpError::UnexpectedString)
}
let started_len = b.len();
let this = Self { fork_id: Decodable::decode(b)? };
// NOTE(onbjerg): Because of EIP-8, we only check that we did not consume *more* than the
// payload length, i.e. it is ok if payload length is greater than what we consumed, as we
// just discard the remaining list items
let consumed = started_len - b.len();
if consumed > rlp_head.payload_length {
return Err(RlpError::ListLengthMismatch {
expected: rlp_head.payload_length,
got: consumed,
})
}
let rem = rlp_head.payload_length - consumed;
b.advance(rem);
*buf = *b;
Ok(this)
}
}
impl From<ForkId> for EnrForkIdEntry {
fn from(fork_id: ForkId) -> Self {
Self { fork_id }
}
}
impl From<EnrForkIdEntry> for ForkId {
fn from(entry: EnrForkIdEntry) -> Self {
entry.fork_id
}
}
/// Reason for rejecting provided `ForkId`.
#[derive(Clone, Copy, Debug, Error, PartialEq, Eq, Hash)]
pub enum ValidationError {
/// Remote node is outdated and needs a software update.
#[error(
"remote node is outdated and needs a software update: local={local:?}, remote={remote:?}"
)]
RemoteStale {
/// locally configured forkId
local: ForkId,
/// ForkId received from remote
remote: ForkId,
},
/// Local node is on an incompatible chain or needs a software update.
#[error("local node is on an incompatible chain or needs a software update: local={local:?}, remote={remote:?}")]
LocalIncompatibleOrStale {
/// locally configured forkId
local: ForkId,
/// ForkId received from remote
remote: ForkId,
},
}
/// Filter that describes the state of blockchain and can be used to check incoming `ForkId`s for
/// compatibility.
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct ForkFilter {
/// The forks in the filter are keyed by `(timestamp, block)`. This ensures that block-based
/// forks (`time == 0`) are processed before time-based forks as required by
/// [EIP-6122][eip-6122].
///
/// Time-based forks have their block number set to 0, allowing easy comparisons with a [Head];
/// a fork is active if both it's time and block number are less than or equal to [Head].
///
/// [eip-6122]: https://eips.ethereum.org/EIPS/eip-6122
forks: BTreeMap<ForkFilterKey, ForkHash>,
/// The current head, used to select forks that are active locally.
head: Head,
cache: Cache,
}
impl ForkFilter {
/// Create the filter from provided head, genesis block hash, past forks and expected future
/// forks.
pub fn new<F>(head: Head, genesis_hash: B256, genesis_timestamp: u64, forks: F) -> Self
where
F: IntoIterator<Item = ForkFilterKey>,
{
let genesis_fork_hash = ForkHash::from(genesis_hash);
let mut forks = forks.into_iter().collect::<BTreeSet<_>>();
forks.remove(&ForkFilterKey::Time(0));
forks.remove(&ForkFilterKey::Block(0));
let forks = forks
.into_iter()
// filter out forks that are pre-genesis by timestamp
.filter(|key| match key {
ForkFilterKey::Block(_) => true,
ForkFilterKey::Time(time) => *time > genesis_timestamp,
})
.collect::<BTreeSet<_>>()
.into_iter()
.fold(
(BTreeMap::from([(ForkFilterKey::Block(0), genesis_fork_hash)]), genesis_fork_hash),
|(mut acc, base_hash), key| {
let fork_hash = base_hash + u64::from(key);
acc.insert(key, fork_hash);
(acc, fork_hash)
},
)
.0;
// Compute cache based on filtered forks and the current head.
let cache = Cache::compute_cache(&forks, head);
// Create and return a new `ForkFilter`.
Self { forks, head, cache }
}
fn set_head_priv(&mut self, head: Head) -> Option<ForkTransition> {
let recompute_cache = {
let head_in_past = match self.cache.epoch_start {
ForkFilterKey::Block(epoch_start_block) => head.number < epoch_start_block,
ForkFilterKey::Time(epoch_start_time) => head.timestamp < epoch_start_time,
};
let head_in_future = match self.cache.epoch_end {
Some(ForkFilterKey::Block(epoch_end_block)) => head.number >= epoch_end_block,
Some(ForkFilterKey::Time(epoch_end_time)) => head.timestamp >= epoch_end_time,
None => false,
};
head_in_past || head_in_future
};
// recompute the cache
let transition = if recompute_cache {
let past = self.current();
self.cache = Cache::compute_cache(&self.forks, head);
Some(ForkTransition { current: self.current(), past })
} else {
None
};
self.head = head;
transition
}
/// Set the current head.
///
/// If the update updates the current [`ForkId`] it returns a [`ForkTransition`]
pub fn set_head(&mut self, head: Head) -> Option<ForkTransition> {
self.set_head_priv(head)
}
/// Return current fork id
#[must_use]
pub const fn current(&self) -> ForkId {
self.cache.fork_id
}
/// Check whether the provided `ForkId` is compatible based on the validation rules in
/// `EIP-2124`.
///
/// Implements the rules following: <https://github.com/ethereum/EIPs/blob/master/EIPS/eip-2124.md#stale-software-examples>
///
/// # Errors
///
/// Returns a `ValidationError` if the `ForkId` is not compatible.
pub fn validate(&self, fork_id: ForkId) -> Result<(), ValidationError> {
// 1) If local and remote FORK_HASH matches...
if self.current().hash == fork_id.hash {
if fork_id.next == 0 {
// 1b) No remotely announced fork, connect.
return Ok(())
}
// We check if this fork is time-based or block number-based
// NOTE: This is a bit hacky but I'm unsure how else we can figure out when to use
// timestamp vs when to use block number..
let head_block_or_time = match self.cache.epoch_start {
ForkFilterKey::Block(_) => self.head.number,
ForkFilterKey::Time(_) => self.head.timestamp,
};
//... compare local head to FORK_NEXT.
return if head_block_or_time >= fork_id.next {
// 1a) A remotely announced but remotely not passed block is already passed locally,
// disconnect, since the chains are incompatible.
Err(ValidationError::LocalIncompatibleOrStale {
local: self.current(),
remote: fork_id,
})
} else {
// 1b) Remotely announced fork not yet passed locally, connect.
Ok(())
}
}
// 2) If the remote FORK_HASH is a subset of the local past forks...
let mut it = self.cache.past.iter();
while let Some((_, hash)) = it.next() {
if *hash == fork_id.hash {
// ...and the remote FORK_NEXT matches with the locally following fork block number
// or timestamp, connect.
if let Some((actual_key, _)) = it.next() {
return if u64::from(*actual_key) == fork_id.next {
Ok(())
} else {
Err(ValidationError::RemoteStale { local: self.current(), remote: fork_id })
}
}
break
}
}
// 3) If the remote FORK_HASH is a superset of the local past forks and can be completed
// with locally known future forks, connect.
for future_fork_hash in &self.cache.future {
if *future_fork_hash == fork_id.hash {
return Ok(())
}
}
// 4) Reject in all other cases.
Err(ValidationError::LocalIncompatibleOrStale { local: self.current(), remote: fork_id })
}
}
/// Represents a transition from one fork to another
///
/// See also [`ForkFilter::set_head`]
#[derive(Debug, Clone, Eq, PartialEq)]
pub struct ForkTransition {
/// The new, active ForkId
pub current: ForkId,
/// The previously active ForkId before the transition
pub past: ForkId,
}
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[derive(Clone, Debug, PartialEq, Eq)]
struct Cache {
// An epoch is a period between forks.
// When we progress from one fork to the next one we move to the next epoch.
epoch_start: ForkFilterKey,
epoch_end: Option<ForkFilterKey>,
past: Vec<(ForkFilterKey, ForkHash)>,
future: Vec<ForkHash>,
fork_id: ForkId,
}
impl Cache {
/// Compute cache.
fn compute_cache(forks: &BTreeMap<ForkFilterKey, ForkHash>, head: Head) -> Self {
// Prepare vectors to store past and future forks.
let mut past = Vec::with_capacity(forks.len());
let mut future = Vec::with_capacity(forks.len());
// Initialize variables to track the epoch range.
let mut epoch_start = ForkFilterKey::Block(0);
let mut epoch_end = None;
// Iterate through forks and categorize them into past and future.
for (key, hash) in forks {
// Check if the fork is active based on its type (Block or Time).
let active = match key {
ForkFilterKey::Block(block) => *block <= head.number,
ForkFilterKey::Time(time) => *time <= head.timestamp,
};
// Categorize forks into past or future based on activity.
if active {
epoch_start = *key;
past.push((*key, *hash));
} else {
if epoch_end.is_none() {
epoch_end = Some(*key);
}
future.push(*hash);
}
}
// Create ForkId using the last past fork's hash and the next epoch start.
let fork_id = ForkId {
hash: past.last().expect("there is always at least one - genesis - fork hash").1,
next: epoch_end.unwrap_or(ForkFilterKey::Block(0)).into(),
};
// Return the computed cache.
Self { epoch_start, epoch_end, past, future, fork_id }
}
}
#[cfg(test)]
mod tests {
use super::*;
use alloy_primitives::b256;
const GENESIS_HASH: B256 =
b256!("d4e56740f876aef8c010b86a40d5f56745a118d0906a34e69aec8c0db1cb8fa3");
// EIP test vectors.
#[test]
fn forkhash() {
let mut fork_hash = ForkHash::from(GENESIS_HASH);
assert_eq!(fork_hash.0, hex!("fc64ec04"));
fork_hash += 1_150_000u64;
assert_eq!(fork_hash.0, hex!("97c2c34c"));
fork_hash += 1_920_000u64;
assert_eq!(fork_hash.0, hex!("91d1f948"));
}
#[test]
fn compatibility_check() {
let mut filter = ForkFilter::new(
Head { number: 0, ..Default::default() },
GENESIS_HASH,
0,
vec![
ForkFilterKey::Block(1_150_000),
ForkFilterKey::Block(1_920_000),
ForkFilterKey::Block(2_463_000),
ForkFilterKey::Block(2_675_000),
ForkFilterKey::Block(4_370_000),
ForkFilterKey::Block(7_280_000),
],
);
// Local is mainnet Petersburg, remote announces the same. No future fork is announced.
filter.set_head(Head { number: 7_987_396, ..Default::default() });
assert_eq!(filter.validate(ForkId { hash: ForkHash(hex!("668db0af")), next: 0 }), Ok(()));
// Local is mainnet Petersburg, remote announces the same. Remote also announces a next fork
// at block 0xffffffff, but that is uncertain.
filter.set_head(Head { number: 7_987_396, ..Default::default() });
assert_eq!(
filter.validate(ForkId { hash: ForkHash(hex!("668db0af")), next: BlockNumber::MAX }),
Ok(())
);
// Local is mainnet currently in Byzantium only (so it's aware of Petersburg),remote
// announces also Byzantium, but it's not yet aware of Petersburg (e.g. non updated
// node before the fork). In this case we don't know if Petersburg passed yet or
// not.
filter.set_head(Head { number: 7_279_999, ..Default::default() });
assert_eq!(filter.validate(ForkId { hash: ForkHash(hex!("a00bc324")), next: 0 }), Ok(()));
// Local is mainnet currently in Byzantium only (so it's aware of Petersburg), remote
// announces also Byzantium, and it's also aware of Petersburg (e.g. updated node
// before the fork). We don't know if Petersburg passed yet (will pass) or not.
filter.set_head(Head { number: 7_279_999, ..Default::default() });
assert_eq!(
filter.validate(ForkId { hash: ForkHash(hex!("a00bc324")), next: 7_280_000 }),
Ok(())
);
// Local is mainnet currently in Byzantium only (so it's aware of Petersburg), remote
// announces also Byzantium, and it's also aware of some random fork (e.g.
// misconfigured Petersburg). As neither forks passed at neither nodes, they may
// mismatch, but we still connect for now.
filter.set_head(Head { number: 7_279_999, ..Default::default() });
assert_eq!(
filter.validate(ForkId { hash: ForkHash(hex!("a00bc324")), next: BlockNumber::MAX }),
Ok(())
);
// Local is mainnet Petersburg, remote announces Byzantium + knowledge about Petersburg.
// Remote is simply out of sync, accept.
filter.set_head(Head { number: 7_987_396, ..Default::default() });
assert_eq!(
filter.validate(ForkId { hash: ForkHash(hex!("a00bc324")), next: 7_280_000 }),
Ok(())
);
// Local is mainnet Petersburg, remote announces Spurious + knowledge about Byzantium.
// Remote is definitely out of sync. It may or may not need the Petersburg update,
// we don't know yet.
filter.set_head(Head { number: 7_987_396, ..Default::default() });
assert_eq!(
filter.validate(ForkId { hash: ForkHash(hex!("3edd5b10")), next: 4_370_000 }),
Ok(())
);
// Local is mainnet Byzantium, remote announces Petersburg. Local is out of sync, accept.
filter.set_head(Head { number: 7_279_999, ..Default::default() });
assert_eq!(filter.validate(ForkId { hash: ForkHash(hex!("668db0af")), next: 0 }), Ok(()));
// Local is mainnet Spurious, remote announces Byzantium, but is not aware of Petersburg.
// Local out of sync. Local also knows about a future fork, but that is uncertain
// yet.
filter.set_head(Head { number: 4_369_999, ..Default::default() });
assert_eq!(filter.validate(ForkId { hash: ForkHash(hex!("a00bc324")), next: 0 }), Ok(()));
// Local is mainnet Petersburg. remote announces Byzantium but is not aware of further
// forks. Remote needs software update.
filter.set_head(Head { number: 7_987_396, ..Default::default() });
let remote = ForkId { hash: ForkHash(hex!("a00bc324")), next: 0 };
assert_eq!(
filter.validate(remote),
Err(ValidationError::RemoteStale { local: filter.current(), remote })
);
// Local is mainnet Petersburg, and isn't aware of more forks. Remote announces Petersburg +
// 0xffffffff. Local needs software update, reject.
filter.set_head(Head { number: 7_987_396, ..Default::default() });
let remote = ForkId { hash: ForkHash(hex!("5cddc0e1")), next: 0 };
assert_eq!(
filter.validate(remote),
Err(ValidationError::LocalIncompatibleOrStale { local: filter.current(), remote })
);
// Local is mainnet Byzantium, and is aware of Petersburg. Remote announces Petersburg +
// 0xffffffff. Local needs software update, reject.
filter.set_head(Head { number: 7_279_999, ..Default::default() });
let remote = ForkId { hash: ForkHash(hex!("5cddc0e1")), next: 0 };
assert_eq!(
filter.validate(remote),
Err(ValidationError::LocalIncompatibleOrStale { local: filter.current(), remote })
);
// Local is mainnet Petersburg, remote is Rinkeby Petersburg.
filter.set_head(Head { number: 7_987_396, ..Default::default() });
let remote = ForkId { hash: ForkHash(hex!("afec6b27")), next: 0 };
assert_eq!(
filter.validate(remote),
Err(ValidationError::LocalIncompatibleOrStale { local: filter.current(), remote })
);
// Local is mainnet Petersburg, far in the future. Remote announces Gopherium (non existing
// fork) at some future block 88888888, for itself, but past block for local. Local
// is incompatible.
//
// This case detects non-upgraded nodes with majority hash power (typical Ropsten mess).
filter.set_head(Head { number: 88_888_888, ..Default::default() });
let remote = ForkId { hash: ForkHash(hex!("668db0af")), next: 88_888_888 };
assert_eq!(
filter.validate(remote),
Err(ValidationError::LocalIncompatibleOrStale { local: filter.current(), remote })
);
// Local is mainnet Byzantium. Remote is also in Byzantium, but announces Gopherium (non
// existing fork) at block 7279999, before Petersburg. Local is incompatible.
filter.set_head(Head { number: 7_279_999, ..Default::default() });
let remote = ForkId { hash: ForkHash(hex!("a00bc324")), next: 7_279_999 };
assert_eq!(
filter.validate(remote),
Err(ValidationError::LocalIncompatibleOrStale { local: filter.current(), remote })
);
}
#[test]
fn forkid_serialization() {
assert_eq!(
&*encode_fixed_size(&ForkId { hash: ForkHash(hex!("00000000")), next: 0 }),
hex!("c6840000000080")
);
assert_eq!(
&*encode_fixed_size(&ForkId { hash: ForkHash(hex!("deadbeef")), next: 0xBADD_CAFE }),
hex!("ca84deadbeef84baddcafe")
);
assert_eq!(
&*encode_fixed_size(&ForkId { hash: ForkHash(hex!("ffffffff")), next: u64::MAX }),
hex!("ce84ffffffff88ffffffffffffffff")
);
assert_eq!(
ForkId::decode(&mut (&hex!("c6840000000080") as &[u8])).unwrap(),
ForkId { hash: ForkHash(hex!("00000000")), next: 0 }
);
assert_eq!(
ForkId::decode(&mut (&hex!("ca84deadbeef84baddcafe") as &[u8])).unwrap(),
ForkId { hash: ForkHash(hex!("deadbeef")), next: 0xBADD_CAFE }
);
assert_eq!(
ForkId::decode(&mut (&hex!("ce84ffffffff88ffffffffffffffff") as &[u8])).unwrap(),
ForkId { hash: ForkHash(hex!("ffffffff")), next: u64::MAX }
);
}
#[test]
fn fork_id_rlp() {
// <https://github.com/ethereum/go-ethereum/blob/767b00b0b514771a663f3362dd0310fc28d40c25/core/forkid/forkid_test.go#L370-L370>
let val = hex!("c6840000000080");
let id = ForkId::decode(&mut &val[..]).unwrap();
assert_eq!(id, ForkId { hash: ForkHash(hex!("00000000")), next: 0 });
assert_eq!(alloy_rlp::encode(id), &val[..]);
let val = hex!("ca84deadbeef84baddcafe");
let id = ForkId::decode(&mut &val[..]).unwrap();
assert_eq!(id, ForkId { hash: ForkHash(hex!("deadbeef")), next: 0xBADDCAFE });
assert_eq!(alloy_rlp::encode(id), &val[..]);
let val = hex!("ce84ffffffff88ffffffffffffffff");
let id = ForkId::decode(&mut &val[..]).unwrap();
assert_eq!(id, ForkId { hash: ForkHash(u32::MAX.to_be_bytes()), next: u64::MAX });
assert_eq!(alloy_rlp::encode(id), &val[..]);
}
#[test]
fn compute_cache() {
let b1 = 1_150_000;
let b2 = 1_920_000;
let h0 = ForkId { hash: ForkHash(hex!("fc64ec04")), next: b1 };
let h1 = ForkId { hash: ForkHash(hex!("97c2c34c")), next: b2 };
let h2 = ForkId { hash: ForkHash(hex!("91d1f948")), next: 0 };
let mut fork_filter = ForkFilter::new(
Head { number: 0, ..Default::default() },
GENESIS_HASH,
0,
vec![ForkFilterKey::Block(b1), ForkFilterKey::Block(b2)],
);
assert!(fork_filter.set_head_priv(Head { number: 0, ..Default::default() }).is_none());
assert_eq!(fork_filter.current(), h0);
assert!(fork_filter.set_head_priv(Head { number: 1, ..Default::default() }).is_none());
assert_eq!(fork_filter.current(), h0);
assert_eq!(
fork_filter.set_head_priv(Head { number: b1 + 1, ..Default::default() }).unwrap(),
ForkTransition { current: h1, past: h0 }
);
assert_eq!(fork_filter.current(), h1);
assert!(fork_filter.set_head_priv(Head { number: b1, ..Default::default() }).is_none());
assert_eq!(fork_filter.current(), h1);
assert_eq!(
fork_filter.set_head_priv(Head { number: b1 - 1, ..Default::default() }).unwrap(),
ForkTransition { current: h0, past: h1 }
);
assert_eq!(fork_filter.current(), h0);
assert!(fork_filter.set_head_priv(Head { number: b1, ..Default::default() }).is_some());
assert_eq!(fork_filter.current(), h1);
assert!(fork_filter.set_head_priv(Head { number: b2 - 1, ..Default::default() }).is_none());
assert_eq!(fork_filter.current(), h1);
assert!(fork_filter.set_head_priv(Head { number: b2, ..Default::default() }).is_some());
assert_eq!(fork_filter.current(), h2);
}
mod eip8 {
use super::*;
fn junk_enr_fork_id_entry() -> Vec<u8> {
let mut buf = Vec::new();
// enr request is just an expiration
let fork_id = ForkId { hash: ForkHash(hex!("deadbeef")), next: 0xBADDCAFE };
// add some junk
let junk: u64 = 112233;
// rlp header encoding
let payload_length = fork_id.length() + junk.length();
alloy_rlp::Header { list: true, payload_length }.encode(&mut buf);
// fields
fork_id.encode(&mut buf);
junk.encode(&mut buf);
buf
}
#[test]
fn eip8_decode_enr_fork_id_entry() {
let enr_fork_id_entry_with_junk = junk_enr_fork_id_entry();
let mut buf = enr_fork_id_entry_with_junk.as_slice();
let decoded = EnrForkIdEntry::decode(&mut buf).unwrap();
assert_eq!(
decoded.fork_id,
ForkId { hash: ForkHash(hex!("deadbeef")), next: 0xBADDCAFE }
);
}
}
}