mirror of
https://github.com/hl-archive-node/nanoreth.git
synced 2025-12-06 10:59:55 +00:00
255 lines
9.9 KiB
Rust
255 lines
9.9 KiB
Rust
//! Crypto utilities.
|
|
|
|
use crate::transaction::signature::Signature;
|
|
use alloy_primitives::U256;
|
|
|
|
/// The order of the secp256k1 curve, divided by two. Signatures that should be checked according
|
|
/// to EIP-2 should have an S value less than or equal to this.
|
|
///
|
|
/// `57896044618658097711785492504343953926418782139537452191302581570759080747168`
|
|
pub const SECP256K1N_HALF: U256 = U256::from_be_bytes([
|
|
0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
|
0x5D, 0x57, 0x6E, 0x73, 0x57, 0xA4, 0x50, 0x1D, 0xDF, 0xE9, 0x2F, 0x46, 0x68, 0x1B, 0x20, 0xA0,
|
|
]);
|
|
|
|
/// Secp256k1 utility functions.
|
|
pub mod secp256k1 {
|
|
use super::*;
|
|
use revm_primitives::{Address, B256};
|
|
|
|
#[cfg(not(feature = "secp256k1"))]
|
|
use super::impl_k256 as imp;
|
|
#[cfg(feature = "secp256k1")]
|
|
use super::impl_secp256k1 as imp;
|
|
|
|
use crate::transaction::signed::RecoveryError;
|
|
pub use imp::{public_key_to_address, sign_message};
|
|
|
|
/// Recover signer from message hash, _without ensuring that the signature has a low `s`
|
|
/// value_.
|
|
///
|
|
/// Using this for signature validation will succeed, even if the signature is malleable or not
|
|
/// compliant with EIP-2. This is provided for compatibility with old signatures which have
|
|
/// large `s` values.
|
|
pub fn recover_signer_unchecked(
|
|
signature: &Signature,
|
|
hash: B256,
|
|
) -> Result<Address, RecoveryError> {
|
|
let mut sig: [u8; 65] = [0; 65];
|
|
|
|
sig[0..32].copy_from_slice(&signature.r().to_be_bytes::<32>());
|
|
sig[32..64].copy_from_slice(&signature.s().to_be_bytes::<32>());
|
|
sig[64] = signature.v() as u8;
|
|
|
|
// NOTE: we are removing error from underlying crypto library as it will restrain primitive
|
|
// errors and we care only if recovery is passing or not.
|
|
imp::recover_signer_unchecked(&sig, &hash.0).map_err(|_| RecoveryError)
|
|
}
|
|
|
|
/// Recover signer address from message hash. This ensures that the signature S value is
|
|
/// greater than `secp256k1n / 2`, as specified in
|
|
/// [EIP-2](https://eips.ethereum.org/EIPS/eip-2).
|
|
///
|
|
/// If the S value is too large, then this will return `None`
|
|
pub fn recover_signer(signature: &Signature, hash: B256) -> Result<Address, RecoveryError> {
|
|
if signature.s() > SECP256K1N_HALF {
|
|
return Err(RecoveryError)
|
|
}
|
|
recover_signer_unchecked(signature, hash)
|
|
}
|
|
}
|
|
|
|
#[cfg(any(test, feature = "secp256k1"))]
|
|
#[allow(unused, unreachable_pub)]
|
|
mod impl_secp256k1 {
|
|
use super::*;
|
|
pub(crate) use ::secp256k1::Error;
|
|
use ::secp256k1::{
|
|
ecdsa::{RecoverableSignature, RecoveryId},
|
|
Message, PublicKey, SecretKey, SECP256K1,
|
|
};
|
|
use alloy_primitives::{keccak256, Address, B256, U256};
|
|
|
|
/// Recovers the address of the sender using secp256k1 pubkey recovery.
|
|
///
|
|
/// Converts the public key into an ethereum address by hashing the public key with keccak256.
|
|
///
|
|
/// This does not ensure that the `s` value in the signature is low, and _just_ wraps the
|
|
/// underlying secp256k1 library.
|
|
pub(crate) fn recover_signer_unchecked(
|
|
sig: &[u8; 65],
|
|
msg: &[u8; 32],
|
|
) -> Result<Address, Error> {
|
|
let sig =
|
|
RecoverableSignature::from_compact(&sig[0..64], RecoveryId::try_from(sig[64] as i32)?)?;
|
|
|
|
let public = SECP256K1.recover_ecdsa(&Message::from_digest(*msg), &sig)?;
|
|
Ok(public_key_to_address(public))
|
|
}
|
|
|
|
/// Signs message with the given secret key.
|
|
/// Returns the corresponding signature.
|
|
pub fn sign_message(secret: B256, message: B256) -> Result<Signature, Error> {
|
|
let sec = SecretKey::from_slice(secret.as_ref())?;
|
|
let s = SECP256K1.sign_ecdsa_recoverable(&Message::from_digest(message.0), &sec);
|
|
let (rec_id, data) = s.serialize_compact();
|
|
|
|
let signature = Signature::new(
|
|
U256::try_from_be_slice(&data[..32]).expect("The slice has at most 32 bytes"),
|
|
U256::try_from_be_slice(&data[32..64]).expect("The slice has at most 32 bytes"),
|
|
i32::from(rec_id) != 0,
|
|
);
|
|
Ok(signature)
|
|
}
|
|
|
|
/// Converts a public key into an ethereum address by hashing the encoded public key with
|
|
/// keccak256.
|
|
pub fn public_key_to_address(public: PublicKey) -> Address {
|
|
// strip out the first byte because that should be the SECP256K1_TAG_PUBKEY_UNCOMPRESSED
|
|
// tag returned by libsecp's uncompressed pubkey serialization
|
|
let hash = keccak256(&public.serialize_uncompressed()[1..]);
|
|
Address::from_slice(&hash[12..])
|
|
}
|
|
}
|
|
|
|
#[cfg_attr(feature = "secp256k1", allow(unused, unreachable_pub))]
|
|
mod impl_k256 {
|
|
use super::*;
|
|
use alloy_primitives::{keccak256, Address, B256};
|
|
pub(crate) use k256::ecdsa::Error;
|
|
use k256::ecdsa::{RecoveryId, SigningKey, VerifyingKey};
|
|
|
|
/// Recovers the address of the sender using secp256k1 pubkey recovery.
|
|
///
|
|
/// Converts the public key into an ethereum address by hashing the public key with keccak256.
|
|
///
|
|
/// This does not ensure that the `s` value in the signature is low, and _just_ wraps the
|
|
/// underlying secp256k1 library.
|
|
pub(crate) fn recover_signer_unchecked(
|
|
sig: &[u8; 65],
|
|
msg: &[u8; 32],
|
|
) -> Result<Address, Error> {
|
|
let mut signature = k256::ecdsa::Signature::from_slice(&sig[0..64])?;
|
|
let mut recid = sig[64];
|
|
|
|
// normalize signature and flip recovery id if needed.
|
|
if let Some(sig_normalized) = signature.normalize_s() {
|
|
signature = sig_normalized;
|
|
recid ^= 1;
|
|
}
|
|
let recid = RecoveryId::from_byte(recid).expect("recovery ID is valid");
|
|
|
|
// recover key
|
|
let recovered_key = VerifyingKey::recover_from_prehash(&msg[..], &signature, recid)?;
|
|
Ok(public_key_to_address(recovered_key))
|
|
}
|
|
|
|
/// Signs message with the given secret key.
|
|
/// Returns the corresponding signature.
|
|
pub fn sign_message(secret: B256, message: B256) -> Result<Signature, Error> {
|
|
let sec = SigningKey::from_slice(secret.as_ref())?;
|
|
sec.sign_prehash_recoverable(&message.0).map(Into::into)
|
|
}
|
|
|
|
/// Converts a public key into an ethereum address by hashing the encoded public key with
|
|
/// keccak256.
|
|
pub fn public_key_to_address(public: VerifyingKey) -> Address {
|
|
let hash = keccak256(&public.to_encoded_point(/* compress = */ false).as_bytes()[1..]);
|
|
Address::from_slice(&hash[12..])
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use alloy_primitives::{keccak256, B256};
|
|
|
|
#[cfg(feature = "secp256k1")]
|
|
#[test]
|
|
fn sanity_ecrecover_call_secp256k1() {
|
|
use super::impl_secp256k1::*;
|
|
|
|
let (secret, public) = secp256k1::generate_keypair(&mut rand::thread_rng());
|
|
let signer = public_key_to_address(public);
|
|
|
|
let message = b"hello world";
|
|
let hash = keccak256(message);
|
|
let signature =
|
|
sign_message(B256::from_slice(&secret.secret_bytes()[..]), hash).expect("sign message");
|
|
|
|
let mut sig: [u8; 65] = [0; 65];
|
|
sig[0..32].copy_from_slice(&signature.r().to_be_bytes::<32>());
|
|
sig[32..64].copy_from_slice(&signature.s().to_be_bytes::<32>());
|
|
sig[64] = signature.v() as u8;
|
|
|
|
assert_eq!(recover_signer_unchecked(&sig, &hash), Ok(signer));
|
|
}
|
|
|
|
#[cfg(not(feature = "secp256k1"))]
|
|
#[test]
|
|
fn sanity_ecrecover_call_k256() {
|
|
use super::impl_k256::*;
|
|
|
|
let secret = k256::ecdsa::SigningKey::random(&mut rand::thread_rng());
|
|
let public = *secret.verifying_key();
|
|
let signer = public_key_to_address(public);
|
|
|
|
let message = b"hello world";
|
|
let hash = keccak256(message);
|
|
let signature =
|
|
sign_message(B256::from_slice(&secret.to_bytes()[..]), hash).expect("sign message");
|
|
|
|
let mut sig: [u8; 65] = [0; 65];
|
|
sig[0..32].copy_from_slice(&signature.r().to_be_bytes::<32>());
|
|
sig[32..64].copy_from_slice(&signature.s().to_be_bytes::<32>());
|
|
sig[64] = signature.v() as u8;
|
|
|
|
assert_eq!(recover_signer_unchecked(&sig, &hash).ok(), Some(signer));
|
|
}
|
|
|
|
#[test]
|
|
fn sanity_secp256k1_k256_compat() {
|
|
use super::{impl_k256, impl_secp256k1};
|
|
|
|
let (secp256k1_secret, secp256k1_public) =
|
|
secp256k1::generate_keypair(&mut rand::thread_rng());
|
|
let k256_secret = k256::ecdsa::SigningKey::from_slice(&secp256k1_secret.secret_bytes())
|
|
.expect("k256 secret");
|
|
let k256_public = *k256_secret.verifying_key();
|
|
|
|
let secp256k1_signer = impl_secp256k1::public_key_to_address(secp256k1_public);
|
|
let k256_signer = impl_k256::public_key_to_address(k256_public);
|
|
assert_eq!(secp256k1_signer, k256_signer);
|
|
|
|
let message = b"hello world";
|
|
let hash = keccak256(message);
|
|
|
|
let secp256k1_signature = impl_secp256k1::sign_message(
|
|
B256::from_slice(&secp256k1_secret.secret_bytes()[..]),
|
|
hash,
|
|
)
|
|
.expect("secp256k1 sign");
|
|
let k256_signature =
|
|
impl_k256::sign_message(B256::from_slice(&k256_secret.to_bytes()[..]), hash)
|
|
.expect("k256 sign");
|
|
assert_eq!(secp256k1_signature, k256_signature);
|
|
|
|
let mut sig: [u8; 65] = [0; 65];
|
|
|
|
sig[0..32].copy_from_slice(&secp256k1_signature.r().to_be_bytes::<32>());
|
|
sig[32..64].copy_from_slice(&secp256k1_signature.s().to_be_bytes::<32>());
|
|
sig[64] = secp256k1_signature.v() as u8;
|
|
let secp256k1_recovered =
|
|
impl_secp256k1::recover_signer_unchecked(&sig, &hash).expect("secp256k1 recover");
|
|
assert_eq!(secp256k1_recovered, secp256k1_signer);
|
|
|
|
sig[0..32].copy_from_slice(&k256_signature.r().to_be_bytes::<32>());
|
|
sig[32..64].copy_from_slice(&k256_signature.s().to_be_bytes::<32>());
|
|
sig[64] = k256_signature.v() as u8;
|
|
let k256_recovered =
|
|
impl_k256::recover_signer_unchecked(&sig, &hash).expect("k256 recover");
|
|
assert_eq!(k256_recovered, k256_signer);
|
|
|
|
assert_eq!(secp256k1_recovered, k256_recovered);
|
|
}
|
|
}
|