Files
nanoreth/crates/storage/provider/src/providers/database/provider.rs

2301 lines
89 KiB
Rust

use crate::{
bundle_state::{BundleStateInit, BundleStateWithReceipts, RevertsInit},
providers::{database::metrics, SnapshotProvider},
traits::{
AccountExtReader, BlockSource, ChangeSetReader, ReceiptProvider, StageCheckpointWriter,
},
AccountReader, BlockExecutionWriter, BlockHashReader, BlockNumReader, BlockReader, BlockWriter,
Chain, EvmEnvProvider, HashingWriter, HeaderProvider, HistoryWriter, OriginalValuesKnown,
ProviderError, PruneCheckpointReader, PruneCheckpointWriter, StageCheckpointReader,
StorageReader, TransactionVariant, TransactionsProvider, TransactionsProviderExt,
WithdrawalsProvider,
};
use itertools::{izip, Itertools};
use reth_db::{
common::KeyValue,
cursor::{DbCursorRO, DbCursorRW, DbDupCursorRO},
database::{Database, DatabaseGAT},
models::{
sharded_key, storage_sharded_key::StorageShardedKey, AccountBeforeTx, BlockNumberAddress,
ShardedKey, StoredBlockBodyIndices, StoredBlockOmmers, StoredBlockWithdrawals,
},
table::{Table, TableRow},
tables,
transaction::{DbTx, DbTxMut},
BlockNumberList, DatabaseError,
};
use reth_interfaces::provider::{ProviderResult, RootMismatch};
use reth_primitives::{
keccak256,
revm::{
config::revm_spec,
env::{fill_block_env, fill_cfg_and_block_env, fill_cfg_env},
},
stage::{StageCheckpoint, StageId},
trie::Nibbles,
Account, Address, Block, BlockHash, BlockHashOrNumber, BlockNumber, BlockWithSenders,
ChainInfo, ChainSpec, GotExpected, Hardfork, Head, Header, PruneCheckpoint, PruneModes,
PruneSegment, Receipt, SealedBlock, SealedBlockWithSenders, SealedHeader, StorageEntry,
TransactionMeta, TransactionSigned, TransactionSignedEcRecovered, TransactionSignedNoHash,
TxHash, TxNumber, Withdrawal, B256, U256,
};
use reth_trie::{prefix_set::PrefixSetMut, StateRoot};
use revm::primitives::{BlockEnv, CfgEnv, SpecId};
use std::{
collections::{hash_map, BTreeMap, BTreeSet, HashMap, HashSet},
fmt::Debug,
ops::{Deref, DerefMut, Range, RangeBounds, RangeInclusive},
sync::{mpsc, Arc},
time::{Duration, Instant},
};
use tracing::{debug, warn};
/// A [`DatabaseProvider`] that holds a read-only database transaction.
pub type DatabaseProviderRO<'this, DB> = DatabaseProvider<<DB as DatabaseGAT<'this>>::TX>;
/// A [`DatabaseProvider`] that holds a read-write database transaction.
///
/// Ideally this would be an alias type. However, there's some weird compiler error (<https://github.com/rust-lang/rust/issues/102211>), that forces us to wrap this in a struct instead.
/// Once that issue is solved, we can probably revert back to being an alias type.
#[derive(Debug)]
pub struct DatabaseProviderRW<'this, DB: Database>(
pub DatabaseProvider<<DB as DatabaseGAT<'this>>::TXMut>,
);
impl<'this, DB: Database> Deref for DatabaseProviderRW<'this, DB> {
type Target = DatabaseProvider<<DB as DatabaseGAT<'this>>::TXMut>;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl<DB: Database> DerefMut for DatabaseProviderRW<'_, DB> {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.0
}
}
impl<'this, DB: Database> DatabaseProviderRW<'this, DB> {
/// Commit database transaction
pub fn commit(self) -> ProviderResult<bool> {
self.0.commit()
}
/// Consume `DbTx` or `DbTxMut`.
pub fn into_tx(self) -> <DB as DatabaseGAT<'this>>::TXMut {
self.0.into_tx()
}
}
/// A provider struct that fetchs data from the database.
/// Wrapper around [`DbTx`] and [`DbTxMut`]. Example: [`HeaderProvider`] [`BlockHashReader`]
#[derive(Debug)]
pub struct DatabaseProvider<TX> {
/// Database transaction.
tx: TX,
/// Chain spec
chain_spec: Arc<ChainSpec>,
/// Snapshot provider
#[allow(unused)]
snapshot_provider: Option<Arc<SnapshotProvider>>,
}
impl<TX: DbTxMut> DatabaseProvider<TX> {
/// Creates a provider with an inner read-write transaction.
pub fn new_rw(tx: TX, chain_spec: Arc<ChainSpec>) -> Self {
Self { tx, chain_spec, snapshot_provider: None }
}
}
/// For a given key, unwind all history shards that are below the given block number.
///
/// S - Sharded key subtype.
/// T - Table to walk over.
/// C - Cursor implementation.
///
/// This function walks the entries from the given start key and deletes all shards that belong to
/// the key and are below the given block number.
///
/// The boundary shard (the shard is split by the block number) is removed from the database. Any
/// indices that are above the block number are filtered out. The boundary shard is returned for
/// reinsertion (if it's not empty).
fn unwind_history_shards<S, T, C>(
cursor: &mut C,
start_key: T::Key,
block_number: BlockNumber,
mut shard_belongs_to_key: impl FnMut(&T::Key) -> bool,
) -> ProviderResult<Vec<usize>>
where
T: Table<Value = BlockNumberList>,
T::Key: AsRef<ShardedKey<S>>,
C: DbCursorRO<T> + DbCursorRW<T>,
{
let mut item = cursor.seek_exact(start_key)?;
while let Some((sharded_key, list)) = item {
// If the shard does not belong to the key, break.
if !shard_belongs_to_key(&sharded_key) {
break
}
cursor.delete_current()?;
// Check the first item.
// If it is greater or eq to the block number, delete it.
let first = list.iter(0).next().expect("List can't be empty");
if first >= block_number as usize {
item = cursor.prev()?;
continue
} else if block_number <= sharded_key.as_ref().highest_block_number {
// Filter out all elements greater than block number.
return Ok(list.iter(0).take_while(|i| *i < block_number as usize).collect::<Vec<_>>())
} else {
return Ok(list.iter(0).collect::<Vec<_>>())
}
}
Ok(Vec::new())
}
impl<TX: DbTx> DatabaseProvider<TX> {
/// Creates a provider with an inner read-only transaction.
pub fn new(tx: TX, chain_spec: Arc<ChainSpec>) -> Self {
Self { tx, chain_spec, snapshot_provider: None }
}
/// Creates a new [`Self`] with access to a [`SnapshotProvider`].
pub fn with_snapshot_provider(mut self, snapshot_provider: Arc<SnapshotProvider>) -> Self {
self.snapshot_provider = Some(snapshot_provider);
self
}
/// Consume `DbTx` or `DbTxMut`.
pub fn into_tx(self) -> TX {
self.tx
}
/// Pass `DbTx` or `DbTxMut` mutable reference.
pub fn tx_mut(&mut self) -> &mut TX {
&mut self.tx
}
/// Pass `DbTx` or `DbTxMut` immutable reference.
pub fn tx_ref(&self) -> &TX {
&self.tx
}
/// Return full table as Vec
pub fn table<T: Table>(&self) -> Result<Vec<KeyValue<T>>, DatabaseError>
where
T::Key: Default + Ord,
{
self.tx
.cursor_read::<T>()?
.walk(Some(T::Key::default()))?
.collect::<Result<Vec<_>, DatabaseError>>()
}
}
impl<TX: DbTxMut + DbTx> DatabaseProvider<TX> {
/// Commit database transaction.
pub fn commit(self) -> ProviderResult<bool> {
Ok(self.tx.commit()?)
}
// TODO(joshie) TEMPORARY should be moved to trait providers
/// Unwind or peek at last N blocks of state recreating the [`BundleStateWithReceipts`].
///
/// If UNWIND it set to true tip and latest state will be unwind
/// and returned back with all the blocks
///
/// If UNWIND is false we will just read the state/blocks and return them.
///
/// 1. Iterate over the [BlockBodyIndices][tables::BlockBodyIndices] table to get all
/// the transaction ids.
/// 2. Iterate over the [StorageChangeSet][tables::StorageChangeSet] table
/// and the [AccountChangeSet][tables::AccountChangeSet] tables in reverse order to reconstruct
/// the changesets.
/// - In order to have both the old and new values in the changesets, we also access the
/// plain state tables.
/// 3. While iterating over the changeset tables, if we encounter a new account or storage slot,
/// we:
/// 1. Take the old value from the changeset
/// 2. Take the new value from the plain state
/// 3. Save the old value to the local state
/// 4. While iterating over the changeset tables, if we encounter an account/storage slot we
/// have seen before we:
/// 1. Take the old value from the changeset
/// 2. Take the new value from the local state
/// 3. Set the local state to the value in the changeset
fn unwind_or_peek_state<const UNWIND: bool>(
&self,
range: RangeInclusive<BlockNumber>,
) -> ProviderResult<BundleStateWithReceipts> {
if range.is_empty() {
return Ok(BundleStateWithReceipts::default())
}
let start_block_number = *range.start();
// We are not removing block meta as it is used to get block changesets.
let block_bodies = self.get_or_take::<tables::BlockBodyIndices, false>(range.clone())?;
// get transaction receipts
let from_transaction_num =
block_bodies.first().expect("already checked if there are blocks").1.first_tx_num();
let to_transaction_num =
block_bodies.last().expect("already checked if there are blocks").1.last_tx_num();
let storage_range = BlockNumberAddress::range(range.clone());
let storage_changeset =
self.get_or_take::<tables::StorageChangeSet, UNWIND>(storage_range)?;
let account_changeset = self.get_or_take::<tables::AccountChangeSet, UNWIND>(range)?;
// iterate previous value and get plain state value to create changeset
// Double option around Account represent if Account state is know (first option) and
// account is removed (Second Option)
let mut state: BundleStateInit = HashMap::new();
// This is not working for blocks that are not at tip. as plain state is not the last
// state of end range. We should rename the functions or add support to access
// History state. Accessing history state can be tricky but we are not gaining
// anything.
let mut plain_accounts_cursor = self.tx.cursor_write::<tables::PlainAccountState>()?;
let mut plain_storage_cursor = self.tx.cursor_dup_write::<tables::PlainStorageState>()?;
let mut reverts: RevertsInit = HashMap::new();
// add account changeset changes
for (block_number, account_before) in account_changeset.into_iter().rev() {
let AccountBeforeTx { info: old_info, address } = account_before;
match state.entry(address) {
hash_map::Entry::Vacant(entry) => {
let new_info = plain_accounts_cursor.seek_exact(address)?.map(|kv| kv.1);
entry.insert((old_info, new_info, HashMap::new()));
}
hash_map::Entry::Occupied(mut entry) => {
// overwrite old account state.
entry.get_mut().0 = old_info;
}
}
// insert old info into reverts.
reverts.entry(block_number).or_default().entry(address).or_default().0 = Some(old_info);
}
// add storage changeset changes
for (block_and_address, old_storage) in storage_changeset.into_iter().rev() {
let BlockNumberAddress((block_number, address)) = block_and_address;
// get account state or insert from plain state.
let account_state = match state.entry(address) {
hash_map::Entry::Vacant(entry) => {
let present_info = plain_accounts_cursor.seek_exact(address)?.map(|kv| kv.1);
entry.insert((present_info, present_info, HashMap::new()))
}
hash_map::Entry::Occupied(entry) => entry.into_mut(),
};
// match storage.
match account_state.2.entry(old_storage.key) {
hash_map::Entry::Vacant(entry) => {
let new_storage = plain_storage_cursor
.seek_by_key_subkey(address, old_storage.key)?
.filter(|storage| storage.key == old_storage.key)
.unwrap_or_default();
entry.insert((old_storage.value, new_storage.value));
}
hash_map::Entry::Occupied(mut entry) => {
entry.get_mut().0 = old_storage.value;
}
};
reverts
.entry(block_number)
.or_default()
.entry(address)
.or_default()
.1
.push(old_storage);
}
if UNWIND {
// iterate over local plain state remove all account and all storages.
for (address, (old_account, new_account, storage)) in state.iter() {
// revert account if needed.
if old_account != new_account {
let existing_entry = plain_accounts_cursor.seek_exact(*address)?;
if let Some(account) = old_account {
plain_accounts_cursor.upsert(*address, *account)?;
} else if existing_entry.is_some() {
plain_accounts_cursor.delete_current()?;
}
}
// revert storages
for (storage_key, (old_storage_value, _new_storage_value)) in storage {
let storage_entry =
StorageEntry { key: *storage_key, value: *old_storage_value };
// delete previous value
// TODO: This does not use dupsort features
if plain_storage_cursor
.seek_by_key_subkey(*address, *storage_key)?
.filter(|s| s.key == *storage_key)
.is_some()
{
plain_storage_cursor.delete_current()?
}
// insert value if needed
if *old_storage_value != U256::ZERO {
plain_storage_cursor.upsert(*address, storage_entry)?;
}
}
}
}
// iterate over block body and create ExecutionResult
let mut receipt_iter = self
.get_or_take::<tables::Receipts, UNWIND>(from_transaction_num..=to_transaction_num)?
.into_iter();
let mut receipts = Vec::new();
// loop break if we are at the end of the blocks.
for (_, block_body) in block_bodies.into_iter() {
let mut block_receipts = Vec::with_capacity(block_body.tx_count as usize);
for _ in block_body.tx_num_range() {
if let Some((_, receipt)) = receipt_iter.next() {
block_receipts.push(Some(receipt));
}
}
receipts.push(block_receipts);
}
Ok(BundleStateWithReceipts::new_init(
state,
reverts,
Vec::new(),
reth_primitives::Receipts::from_vec(receipts),
start_block_number,
))
}
/// Return list of entries from table
///
/// If TAKE is true, opened cursor would be write and it would delete all values from db.
#[inline]
pub fn get_or_take<T: Table, const TAKE: bool>(
&self,
range: impl RangeBounds<T::Key>,
) -> Result<Vec<KeyValue<T>>, DatabaseError> {
if TAKE {
let mut cursor_write = self.tx.cursor_write::<T>()?;
let mut walker = cursor_write.walk_range(range)?;
let mut items = Vec::new();
while let Some(i) = walker.next().transpose()? {
walker.delete_current()?;
items.push(i)
}
Ok(items)
} else {
self.tx.cursor_read::<T>()?.walk_range(range)?.collect::<Result<Vec<_>, _>>()
}
}
/// Get requested blocks transaction with signer
pub(crate) fn get_take_block_transaction_range<const TAKE: bool>(
&self,
range: impl RangeBounds<BlockNumber> + Clone,
) -> ProviderResult<Vec<(BlockNumber, Vec<TransactionSignedEcRecovered>)>> {
// Raad range of block bodies to get all transactions id's of this range.
let block_bodies = self.get_or_take::<tables::BlockBodyIndices, false>(range)?;
if block_bodies.is_empty() {
return Ok(Vec::new())
}
// Compute the first and last tx ID in the range
let first_transaction = block_bodies.first().expect("If we have headers").1.first_tx_num();
let last_transaction = block_bodies.last().expect("Not empty").1.last_tx_num();
// If this is the case then all of the blocks in the range are empty
if last_transaction < first_transaction {
return Ok(block_bodies.into_iter().map(|(n, _)| (n, Vec::new())).collect())
}
// Get transactions and senders
let transactions = self
.get_or_take::<tables::Transactions, TAKE>(first_transaction..=last_transaction)?
.into_iter()
.map(|(id, tx)| (id, tx.into()))
.collect::<Vec<(u64, TransactionSigned)>>();
let mut senders =
self.get_or_take::<tables::TxSenders, TAKE>(first_transaction..=last_transaction)?;
// Recover senders manually if not found in db
// SAFETY: Transactions are always guaranteed to be in the database whereas
// senders might be pruned.
if senders.len() != transactions.len() {
senders.reserve(transactions.len() - senders.len());
// Find all missing senders, their corresponding tx numbers and indexes to the original
// `senders` vector at which the recovered senders will be inserted.
let mut missing_senders = Vec::with_capacity(transactions.len() - senders.len());
{
let mut senders = senders.iter().peekable();
// `transactions` contain all entries. `senders` contain _some_ of the senders for
// these transactions. Both are sorted and indexed by `TxNumber`.
//
// The general idea is to iterate on both `transactions` and `senders`, and advance
// the `senders` iteration only if it matches the current `transactions` entry's
// `TxNumber`. Otherwise, add the transaction to the list of missing senders.
for (i, (tx_number, transaction)) in transactions.iter().enumerate() {
if let Some((sender_tx_number, _)) = senders.peek() {
if sender_tx_number == tx_number {
// If current sender's `TxNumber` matches current transaction's
// `TxNumber`, advance the senders iterator.
senders.next();
} else {
// If current sender's `TxNumber` doesn't match current transaction's
// `TxNumber`, add it to missing senders.
missing_senders.push((i, tx_number, transaction));
}
} else {
// If there's no more senders left, but we're still iterating over
// transactions, add them to missing senders
missing_senders.push((i, tx_number, transaction));
}
}
}
// Recover senders
let recovered_senders = TransactionSigned::recover_signers(
missing_senders.iter().map(|(_, _, tx)| *tx).collect::<Vec<_>>(),
missing_senders.len(),
)
.ok_or(ProviderError::SenderRecoveryError)?;
// Insert recovered senders along with tx numbers at the corresponding indexes to the
// original `senders` vector
for ((i, tx_number, _), sender) in missing_senders.into_iter().zip(recovered_senders) {
// Insert will put recovered senders at necessary positions and shift the rest
senders.insert(i, (*tx_number, sender));
}
// Debug assertions which are triggered during the test to ensure that all senders are
// present and sorted
debug_assert_eq!(senders.len(), transactions.len(), "missing one or more senders");
debug_assert!(
senders.iter().tuple_windows().all(|(a, b)| a.0 < b.0),
"senders not sorted"
);
}
if TAKE {
// Remove TxHashNumber
let mut tx_hash_cursor = self.tx.cursor_write::<tables::TxHashNumber>()?;
for (_, tx) in transactions.iter() {
if tx_hash_cursor.seek_exact(tx.hash())?.is_some() {
tx_hash_cursor.delete_current()?;
}
}
// Remove TransactionBlock index if there are transaction present
if !transactions.is_empty() {
let tx_id_range = transactions.first().unwrap().0..=transactions.last().unwrap().0;
self.get_or_take::<tables::TransactionBlock, TAKE>(tx_id_range)?;
}
}
// Merge transaction into blocks
let mut block_tx = Vec::with_capacity(block_bodies.len());
let mut senders = senders.into_iter();
let mut transactions = transactions.into_iter();
for (block_number, block_body) in block_bodies {
let mut one_block_tx = Vec::with_capacity(block_body.tx_count as usize);
for _ in block_body.tx_num_range() {
let tx = transactions.next();
let sender = senders.next();
let recovered = match (tx, sender) {
(Some((tx_id, tx)), Some((sender_tx_id, sender))) => {
if tx_id != sender_tx_id {
Err(ProviderError::MismatchOfTransactionAndSenderId { tx_id })
} else {
Ok(TransactionSignedEcRecovered::from_signed_transaction(tx, sender))
}
}
(Some((tx_id, _)), _) | (_, Some((tx_id, _))) => {
Err(ProviderError::MismatchOfTransactionAndSenderId { tx_id })
}
(None, None) => Err(ProviderError::BlockBodyTransactionCount),
}?;
one_block_tx.push(recovered)
}
block_tx.push((block_number, one_block_tx));
}
Ok(block_tx)
}
/// Return range of blocks and its execution result
fn get_take_block_range<const TAKE: bool>(
&self,
chain_spec: &ChainSpec,
range: impl RangeBounds<BlockNumber> + Clone,
) -> ProviderResult<Vec<SealedBlockWithSenders>> {
// For block we need Headers, Bodies, Uncles, withdrawals, Transactions, Signers
let block_headers = self.get_or_take::<tables::Headers, TAKE>(range.clone())?;
if block_headers.is_empty() {
return Ok(Vec::new())
}
let block_header_hashes =
self.get_or_take::<tables::CanonicalHeaders, TAKE>(range.clone())?;
let block_ommers = self.get_or_take::<tables::BlockOmmers, TAKE>(range.clone())?;
let block_withdrawals =
self.get_or_take::<tables::BlockWithdrawals, TAKE>(range.clone())?;
let block_tx = self.get_take_block_transaction_range::<TAKE>(range.clone())?;
if TAKE {
// rm HeaderTD
self.get_or_take::<tables::HeaderTD, TAKE>(range)?;
// rm HeaderNumbers
let mut header_number_cursor = self.tx.cursor_write::<tables::HeaderNumbers>()?;
for (_, hash) in block_header_hashes.iter() {
if header_number_cursor.seek_exact(*hash)?.is_some() {
header_number_cursor.delete_current()?;
}
}
}
// merge all into block
let block_header_iter = block_headers.into_iter();
let block_header_hashes_iter = block_header_hashes.into_iter();
let block_tx_iter = block_tx.into_iter();
// Ommers can be empty for some blocks
let mut block_ommers_iter = block_ommers.into_iter();
let mut block_withdrawals_iter = block_withdrawals.into_iter();
let mut block_ommers = block_ommers_iter.next();
let mut block_withdrawals = block_withdrawals_iter.next();
let mut blocks = Vec::new();
for ((main_block_number, header), (_, header_hash), (_, tx)) in
izip!(block_header_iter.into_iter(), block_header_hashes_iter, block_tx_iter)
{
let header = header.seal(header_hash);
let (body, senders) = tx.into_iter().map(|tx| tx.to_components()).unzip();
// Ommers can be missing
let mut ommers = Vec::new();
if let Some((block_number, _)) = block_ommers.as_ref() {
if *block_number == main_block_number {
ommers = block_ommers.take().unwrap().1.ommers;
block_ommers = block_ommers_iter.next();
}
};
// withdrawal can be missing
let shanghai_is_active =
chain_spec.fork(Hardfork::Shanghai).active_at_timestamp(header.timestamp);
let mut withdrawals = Some(Vec::new());
if shanghai_is_active {
if let Some((block_number, _)) = block_withdrawals.as_ref() {
if *block_number == main_block_number {
withdrawals = Some(block_withdrawals.take().unwrap().1.withdrawals);
block_withdrawals = block_withdrawals_iter.next();
}
}
} else {
withdrawals = None
}
blocks.push(SealedBlockWithSenders {
block: SealedBlock { header, body, ommers, withdrawals },
senders,
})
}
Ok(blocks)
}
/// Unwind table by some number key.
/// Returns number of rows unwound.
///
/// Note: Key is not inclusive and specified key would stay in db.
#[inline]
pub fn unwind_table_by_num<T>(&self, num: u64) -> Result<usize, DatabaseError>
where
T: Table<Key = u64>,
{
self.unwind_table::<T, _>(num, |key| key)
}
/// Unwind the table to a provided number key.
/// Returns number of rows unwound.
///
/// Note: Key is not inclusive and specified key would stay in db.
pub(crate) fn unwind_table<T, F>(
&self,
key: u64,
mut selector: F,
) -> Result<usize, DatabaseError>
where
T: Table,
F: FnMut(T::Key) -> u64,
{
let mut cursor = self.tx.cursor_write::<T>()?;
let mut reverse_walker = cursor.walk_back(None)?;
let mut deleted = 0;
while let Some(Ok((entry_key, _))) = reverse_walker.next() {
if selector(entry_key.clone()) <= key {
break
}
reverse_walker.delete_current()?;
deleted += 1;
}
Ok(deleted)
}
/// Unwind a table forward by a [Walker][reth_db::abstraction::cursor::Walker] on another table
pub fn unwind_table_by_walker<T1, T2>(&self, start_at: T1::Key) -> Result<(), DatabaseError>
where
T1: Table,
T2: Table<Key = T1::Value>,
{
let mut cursor = self.tx.cursor_write::<T1>()?;
let mut walker = cursor.walk(Some(start_at))?;
while let Some((_, value)) = walker.next().transpose()? {
self.tx.delete::<T2>(value, None)?;
}
Ok(())
}
/// Prune the table for the specified pre-sorted key iterator.
///
/// Returns number of rows pruned.
pub fn prune_table_with_iterator<T: Table>(
&self,
keys: impl IntoIterator<Item = T::Key>,
limit: usize,
mut delete_callback: impl FnMut(TableRow<T>),
) -> Result<(usize, bool), DatabaseError> {
let mut cursor = self.tx.cursor_write::<T>()?;
let mut deleted = 0;
let mut keys = keys.into_iter();
if limit != 0 {
for key in &mut keys {
let row = cursor.seek_exact(key.clone())?;
if let Some(row) = row {
cursor.delete_current()?;
deleted += 1;
delete_callback(row);
}
if deleted == limit {
break
}
}
}
Ok((deleted, keys.next().is_none()))
}
/// Prune the table for the specified key range.
///
/// Returns number of rows pruned.
pub fn prune_table_with_range<T: Table>(
&self,
keys: impl RangeBounds<T::Key> + Clone + Debug,
limit: usize,
mut skip_filter: impl FnMut(&TableRow<T>) -> bool,
mut delete_callback: impl FnMut(TableRow<T>),
) -> Result<(usize, bool), DatabaseError> {
let mut cursor = self.tx.cursor_write::<T>()?;
let mut walker = cursor.walk_range(keys)?;
let mut deleted = 0;
if limit != 0 {
while let Some(row) = walker.next().transpose()? {
if !skip_filter(&row) {
walker.delete_current()?;
deleted += 1;
delete_callback(row);
}
if deleted == limit {
break
}
}
}
Ok((deleted, walker.next().transpose()?.is_none()))
}
/// Load shard and remove it. If list is empty, last shard was full or
/// there are no shards at all.
fn take_shard<T>(&self, key: T::Key) -> ProviderResult<Vec<u64>>
where
T: Table<Value = BlockNumberList>,
{
let mut cursor = self.tx.cursor_read::<T>()?;
let shard = cursor.seek_exact(key)?;
if let Some((shard_key, list)) = shard {
// delete old shard so new one can be inserted.
self.tx.delete::<T>(shard_key, None)?;
let list = list.iter(0).map(|i| i as u64).collect::<Vec<_>>();
return Ok(list)
}
Ok(Vec::new())
}
/// Insert history index to the database.
///
/// For each updated partial key, this function removes the last shard from
/// the database (if any), appends the new indices to it, chunks the resulting integer list and
/// inserts the new shards back into the database.
///
/// This function is used by history indexing stages.
fn append_history_index<P, T>(
&self,
index_updates: BTreeMap<P, Vec<u64>>,
mut sharded_key_factory: impl FnMut(P, BlockNumber) -> T::Key,
) -> ProviderResult<()>
where
P: Copy,
T: Table<Value = BlockNumberList>,
{
for (partial_key, indices) in index_updates {
let last_shard = self.take_shard::<T>(sharded_key_factory(partial_key, u64::MAX))?;
// chunk indices and insert them in shards of N size.
let indices = last_shard.iter().chain(indices.iter());
let chunks = indices
.chunks(sharded_key::NUM_OF_INDICES_IN_SHARD)
.into_iter()
.map(|chunks| chunks.map(|i| *i as usize).collect::<Vec<usize>>())
.collect::<Vec<_>>();
let mut chunks = chunks.into_iter().peekable();
while let Some(list) = chunks.next() {
let highest_block_number = if chunks.peek().is_some() {
*list.last().expect("`chunks` does not return empty list") as u64
} else {
// Insert last list with u64::MAX
u64::MAX
};
self.tx.put::<T>(
sharded_key_factory(partial_key, highest_block_number),
BlockNumberList::new_pre_sorted(list),
)?;
}
}
Ok(())
}
}
impl<TX: DbTx> AccountReader for DatabaseProvider<TX> {
fn basic_account(&self, address: Address) -> ProviderResult<Option<Account>> {
Ok(self.tx.get::<tables::PlainAccountState>(address)?)
}
}
impl<TX: DbTx> AccountExtReader for DatabaseProvider<TX> {
fn changed_accounts_with_range(
&self,
range: impl RangeBounds<BlockNumber>,
) -> ProviderResult<BTreeSet<Address>> {
self.tx
.cursor_read::<tables::AccountChangeSet>()?
.walk_range(range)?
.map(|entry| {
entry.map(|(_, account_before)| account_before.address).map_err(Into::into)
})
.collect()
}
fn basic_accounts(
&self,
iter: impl IntoIterator<Item = Address>,
) -> ProviderResult<Vec<(Address, Option<Account>)>> {
let mut plain_accounts = self.tx.cursor_read::<tables::PlainAccountState>()?;
Ok(iter
.into_iter()
.map(|address| plain_accounts.seek_exact(address).map(|a| (address, a.map(|(_, v)| v))))
.collect::<Result<Vec<_>, _>>()?)
}
fn changed_accounts_and_blocks_with_range(
&self,
range: RangeInclusive<BlockNumber>,
) -> ProviderResult<BTreeMap<Address, Vec<u64>>> {
let mut changeset_cursor = self.tx.cursor_read::<tables::AccountChangeSet>()?;
let account_transitions = changeset_cursor.walk_range(range)?.try_fold(
BTreeMap::new(),
|mut accounts: BTreeMap<Address, Vec<u64>>, entry| -> ProviderResult<_> {
let (index, account) = entry?;
accounts.entry(account.address).or_default().push(index);
Ok(accounts)
},
)?;
Ok(account_transitions)
}
}
impl<TX: DbTx> ChangeSetReader for DatabaseProvider<TX> {
fn account_block_changeset(
&self,
block_number: BlockNumber,
) -> ProviderResult<Vec<AccountBeforeTx>> {
let range = block_number..=block_number;
self.tx
.cursor_read::<tables::AccountChangeSet>()?
.walk_range(range)?
.map(|result| -> ProviderResult<_> {
let (_, account_before) = result?;
Ok(account_before)
})
.collect()
}
}
impl<TX: DbTx> HeaderProvider for DatabaseProvider<TX> {
fn header(&self, block_hash: &BlockHash) -> ProviderResult<Option<Header>> {
if let Some(num) = self.block_number(*block_hash)? {
Ok(self.header_by_number(num)?)
} else {
Ok(None)
}
}
fn header_by_number(&self, num: BlockNumber) -> ProviderResult<Option<Header>> {
Ok(self.tx.get::<tables::Headers>(num)?)
}
fn header_td(&self, block_hash: &BlockHash) -> ProviderResult<Option<U256>> {
if let Some(num) = self.block_number(*block_hash)? {
self.header_td_by_number(num)
} else {
Ok(None)
}
}
fn header_td_by_number(&self, number: BlockNumber) -> ProviderResult<Option<U256>> {
if let Some(td) = self.chain_spec.final_paris_total_difficulty(number) {
// if this block is higher than the final paris(merge) block, return the final paris
// difficulty
return Ok(Some(td))
}
Ok(self.tx.get::<tables::HeaderTD>(number)?.map(|td| td.0))
}
fn headers_range(&self, range: impl RangeBounds<BlockNumber>) -> ProviderResult<Vec<Header>> {
let mut cursor = self.tx.cursor_read::<tables::Headers>()?;
cursor
.walk_range(range)?
.map(|result| result.map(|(_, header)| header).map_err(Into::into))
.collect::<ProviderResult<Vec<_>>>()
}
fn sealed_header(&self, number: BlockNumber) -> ProviderResult<Option<SealedHeader>> {
if let Some(header) = self.header_by_number(number)? {
let hash = self
.block_hash(number)?
.ok_or_else(|| ProviderError::HeaderNotFound(number.into()))?;
Ok(Some(header.seal(hash)))
} else {
Ok(None)
}
}
fn sealed_headers_while(
&self,
range: impl RangeBounds<BlockNumber>,
mut predicate: impl FnMut(&SealedHeader) -> bool,
) -> ProviderResult<Vec<SealedHeader>> {
let mut headers = vec![];
for entry in self.tx.cursor_read::<tables::Headers>()?.walk_range(range)? {
let (number, header) = entry?;
let hash = self
.block_hash(number)?
.ok_or_else(|| ProviderError::HeaderNotFound(number.into()))?;
let sealed = header.seal(hash);
if !predicate(&sealed) {
break
}
headers.push(sealed);
}
Ok(headers)
}
}
impl<TX: DbTx> BlockHashReader for DatabaseProvider<TX> {
fn block_hash(&self, number: u64) -> ProviderResult<Option<B256>> {
Ok(self.tx.get::<tables::CanonicalHeaders>(number)?)
}
fn canonical_hashes_range(
&self,
start: BlockNumber,
end: BlockNumber,
) -> ProviderResult<Vec<B256>> {
let range = start..end;
let mut cursor = self.tx.cursor_read::<tables::CanonicalHeaders>()?;
cursor
.walk_range(range)?
.map(|result| result.map(|(_, hash)| hash).map_err(Into::into))
.collect::<ProviderResult<Vec<_>>>()
}
}
impl<TX: DbTx> BlockNumReader for DatabaseProvider<TX> {
fn chain_info(&self) -> ProviderResult<ChainInfo> {
let best_number = self.best_block_number()?;
let best_hash = self.block_hash(best_number)?.unwrap_or_default();
Ok(ChainInfo { best_hash, best_number })
}
fn best_block_number(&self) -> ProviderResult<BlockNumber> {
Ok(self
.get_stage_checkpoint(StageId::Finish)?
.map(|checkpoint| checkpoint.block_number)
.unwrap_or_default())
}
fn last_block_number(&self) -> ProviderResult<BlockNumber> {
Ok(self.tx.cursor_read::<tables::CanonicalHeaders>()?.last()?.unwrap_or_default().0)
}
fn block_number(&self, hash: B256) -> ProviderResult<Option<BlockNumber>> {
Ok(self.tx.get::<tables::HeaderNumbers>(hash)?)
}
}
impl<TX: DbTx> BlockReader for DatabaseProvider<TX> {
fn find_block_by_hash(&self, hash: B256, source: BlockSource) -> ProviderResult<Option<Block>> {
if source.is_database() {
self.block(hash.into())
} else {
Ok(None)
}
}
/// Returns the block with matching number from database.
///
/// If the header for this block is not found, this returns `None`.
/// If the header is found, but the transactions either do not exist, or are not indexed, this
/// will return None.
fn block(&self, id: BlockHashOrNumber) -> ProviderResult<Option<Block>> {
if let Some(number) = self.convert_hash_or_number(id)? {
if let Some(header) = self.header_by_number(number)? {
let withdrawals = self.withdrawals_by_block(number.into(), header.timestamp)?;
let ommers = self.ommers(number.into())?.unwrap_or_default();
// If the body indices are not found, this means that the transactions either do not
// exist in the database yet, or they do exit but are not indexed.
// If they exist but are not indexed, we don't have enough
// information to return the block anyways, so we return `None`.
let transactions = match self.transactions_by_block(number.into())? {
Some(transactions) => transactions,
None => return Ok(None),
};
return Ok(Some(Block { header, body: transactions, ommers, withdrawals }))
}
}
Ok(None)
}
fn pending_block(&self) -> ProviderResult<Option<SealedBlock>> {
Ok(None)
}
fn pending_block_and_receipts(&self) -> ProviderResult<Option<(SealedBlock, Vec<Receipt>)>> {
Ok(None)
}
fn ommers(&self, id: BlockHashOrNumber) -> ProviderResult<Option<Vec<Header>>> {
if let Some(number) = self.convert_hash_or_number(id)? {
// If the Paris (Merge) hardfork block is known and block is after it, return empty
// ommers.
if self.chain_spec.final_paris_total_difficulty(number).is_some() {
return Ok(Some(Vec::new()))
}
let ommers = self.tx.get::<tables::BlockOmmers>(number)?.map(|o| o.ommers);
return Ok(ommers)
}
Ok(None)
}
fn block_body_indices(&self, num: u64) -> ProviderResult<Option<StoredBlockBodyIndices>> {
Ok(self.tx.get::<tables::BlockBodyIndices>(num)?)
}
/// Returns the block with senders with matching number or hash from database.
///
/// **NOTE: The transactions have invalid hashes, since they would need to be calculated on the
/// spot, and we want fast querying.**
///
/// If the header for this block is not found, this returns `None`.
/// If the header is found, but the transactions either do not exist, or are not indexed, this
/// will return None.
fn block_with_senders(
&self,
id: BlockHashOrNumber,
transaction_kind: TransactionVariant,
) -> ProviderResult<Option<BlockWithSenders>> {
let Some(block_number) = self.convert_hash_or_number(id)? else { return Ok(None) };
let Some(header) = self.header_by_number(block_number)? else { return Ok(None) };
let ommers = self.ommers(block_number.into())?.unwrap_or_default();
let withdrawals = self.withdrawals_by_block(block_number.into(), header.timestamp)?;
// Get the block body
//
// If the body indices are not found, this means that the transactions either do not exist
// in the database yet, or they do exit but are not indexed. If they exist but are not
// indexed, we don't have enough information to return the block anyways, so we return
// `None`.
let body = match self.block_body_indices(block_number)? {
Some(body) => body,
None => return Ok(None),
};
let tx_range = body.tx_num_range();
let (transactions, senders) = if tx_range.is_empty() {
(vec![], vec![])
} else {
(self.transactions_by_tx_range(tx_range.clone())?, self.senders_by_tx_range(tx_range)?)
};
let body = transactions
.into_iter()
.map(|tx| match transaction_kind {
TransactionVariant::NoHash => TransactionSigned {
// Caller explicitly asked for no hash, so we don't calculate it
hash: Default::default(),
signature: tx.signature,
transaction: tx.transaction,
},
TransactionVariant::WithHash => tx.with_hash(),
})
.collect();
Ok(Some(Block { header, body, ommers, withdrawals }.with_senders(senders)))
}
fn block_range(&self, range: RangeInclusive<BlockNumber>) -> ProviderResult<Vec<Block>> {
if range.is_empty() {
return Ok(Vec::new())
}
let len = range.end().saturating_sub(*range.start()) as usize;
let mut blocks = Vec::with_capacity(len);
let mut headers_cursor = self.tx.cursor_read::<tables::Headers>()?;
let mut ommers_cursor = self.tx.cursor_read::<tables::BlockOmmers>()?;
let mut withdrawals_cursor = self.tx.cursor_read::<tables::BlockWithdrawals>()?;
let mut block_body_cursor = self.tx.cursor_read::<tables::BlockBodyIndices>()?;
let mut tx_cursor = self.tx.cursor_read::<tables::Transactions>()?;
for num in range {
if let Some((_, header)) = headers_cursor.seek_exact(num)? {
// If the body indices are not found, this means that the transactions either do
// not exist in the database yet, or they do exit but are
// not indexed. If they exist but are not indexed, we don't
// have enough information to return the block anyways, so
// we skip the block.
if let Some((_, block_body_indices)) = block_body_cursor.seek_exact(num)? {
let tx_range = block_body_indices.tx_num_range();
let body = if tx_range.is_empty() {
Vec::new()
} else {
tx_cursor
.walk_range(tx_range)?
.map(|result| result.map(|(_, tx)| tx.into()))
.collect::<Result<Vec<_>, _>>()?
};
// If we are past shanghai, then all blocks should have a withdrawal list,
// even if empty
let withdrawals =
if self.chain_spec.is_shanghai_active_at_timestamp(header.timestamp) {
Some(
withdrawals_cursor
.seek_exact(num)?
.map(|(_, w)| w.withdrawals)
.unwrap_or_default(),
)
} else {
None
};
let ommers = if self.chain_spec.final_paris_total_difficulty(num).is_some() {
Vec::new()
} else {
ommers_cursor.seek_exact(num)?.map(|(_, o)| o.ommers).unwrap_or_default()
};
blocks.push(Block { header, body, ommers, withdrawals });
}
}
}
Ok(blocks)
}
}
impl<TX: DbTx> TransactionsProviderExt for DatabaseProvider<TX> {
/// Recovers transaction hashes by walking through `Transactions` table and
/// calculating them in a parallel manner. Returned unsorted.
fn transaction_hashes_by_range(
&self,
tx_range: Range<TxNumber>,
) -> ProviderResult<Vec<(TxHash, TxNumber)>> {
let mut tx_cursor = self.tx.cursor_read::<tables::Transactions>()?;
let tx_range_size = tx_range.clone().count();
let tx_walker = tx_cursor.walk_range(tx_range)?;
let chunk_size = (tx_range_size / rayon::current_num_threads()).max(1);
let mut channels = Vec::with_capacity(chunk_size);
let mut transaction_count = 0;
#[inline]
fn calculate_hash(
entry: Result<(TxNumber, TransactionSignedNoHash), DatabaseError>,
rlp_buf: &mut Vec<u8>,
) -> Result<(B256, TxNumber), Box<ProviderError>> {
let (tx_id, tx) = entry.map_err(|e| Box::new(e.into()))?;
tx.transaction.encode_with_signature(&tx.signature, rlp_buf, false);
Ok((keccak256(rlp_buf), tx_id))
}
for chunk in &tx_walker.chunks(chunk_size) {
let (tx, rx) = mpsc::channel();
channels.push(rx);
// Note: Unfortunate side-effect of how chunk is designed in itertools (it is not Send)
let chunk: Vec<_> = chunk.collect();
transaction_count += chunk.len();
// Spawn the task onto the global rayon pool
// This task will send the results through the channel after it has calculated the hash.
rayon::spawn(move || {
let mut rlp_buf = Vec::with_capacity(128);
for entry in chunk {
rlp_buf.clear();
let _ = tx.send(calculate_hash(entry, &mut rlp_buf));
}
});
}
let mut tx_list = Vec::with_capacity(transaction_count);
// Iterate over channels and append the tx hashes unsorted
for channel in channels {
while let Ok(tx) = channel.recv() {
let (tx_hash, tx_id) = tx.map_err(|boxed| *boxed)?;
tx_list.push((tx_hash, tx_id));
}
}
Ok(tx_list)
}
}
/// Calculates the hash of the given transaction
impl<TX: DbTx> TransactionsProvider for DatabaseProvider<TX> {
fn transaction_id(&self, tx_hash: TxHash) -> ProviderResult<Option<TxNumber>> {
Ok(self.tx.get::<tables::TxHashNumber>(tx_hash)?)
}
fn transaction_by_id(&self, id: TxNumber) -> ProviderResult<Option<TransactionSigned>> {
Ok(self.tx.get::<tables::Transactions>(id)?.map(Into::into))
}
fn transaction_by_id_no_hash(
&self,
id: TxNumber,
) -> ProviderResult<Option<TransactionSignedNoHash>> {
Ok(self.tx.get::<tables::Transactions>(id)?)
}
fn transaction_by_hash(&self, hash: TxHash) -> ProviderResult<Option<TransactionSigned>> {
if let Some(id) = self.transaction_id(hash)? {
Ok(self.transaction_by_id_no_hash(id)?.map(|tx| TransactionSigned {
hash,
signature: tx.signature,
transaction: tx.transaction,
}))
} else {
Ok(None)
}
.map(|tx| tx.map(Into::into))
}
fn transaction_by_hash_with_meta(
&self,
tx_hash: TxHash,
) -> ProviderResult<Option<(TransactionSigned, TransactionMeta)>> {
let mut transaction_cursor = self.tx.cursor_read::<tables::TransactionBlock>()?;
if let Some(transaction_id) = self.transaction_id(tx_hash)? {
if let Some(tx) = self.transaction_by_id_no_hash(transaction_id)? {
let transaction = TransactionSigned {
hash: tx_hash,
signature: tx.signature,
transaction: tx.transaction,
};
if let Some(block_number) =
transaction_cursor.seek(transaction_id).map(|b| b.map(|(_, bn)| bn))?
{
if let Some(sealed_header) = self.sealed_header(block_number)? {
let (header, block_hash) = sealed_header.split();
if let Some(block_body) = self.block_body_indices(block_number)? {
// the index of the tx in the block is the offset:
// len([start..tx_id])
// SAFETY: `transaction_id` is always `>=` the block's first
// index
let index = transaction_id - block_body.first_tx_num();
let meta = TransactionMeta {
tx_hash,
index,
block_hash,
block_number,
base_fee: header.base_fee_per_gas,
excess_blob_gas: header.excess_blob_gas,
};
return Ok(Some((transaction, meta)))
}
}
}
}
}
Ok(None)
}
fn transaction_block(&self, id: TxNumber) -> ProviderResult<Option<BlockNumber>> {
let mut cursor = self.tx.cursor_read::<tables::TransactionBlock>()?;
Ok(cursor.seek(id)?.map(|(_, bn)| bn))
}
fn transactions_by_block(
&self,
id: BlockHashOrNumber,
) -> ProviderResult<Option<Vec<TransactionSigned>>> {
let mut tx_cursor = self.tx.cursor_read::<tables::Transactions>()?;
if let Some(block_number) = self.convert_hash_or_number(id)? {
if let Some(body) = self.block_body_indices(block_number)? {
let tx_range = body.tx_num_range();
return if tx_range.is_empty() {
Ok(Some(Vec::new()))
} else {
let transactions = tx_cursor
.walk_range(tx_range)?
.map(|result| result.map(|(_, tx)| tx.into()))
.collect::<Result<Vec<_>, _>>()?;
Ok(Some(transactions))
}
}
}
Ok(None)
}
fn transactions_by_block_range(
&self,
range: impl RangeBounds<BlockNumber>,
) -> ProviderResult<Vec<Vec<TransactionSigned>>> {
let mut results = Vec::new();
let mut body_cursor = self.tx.cursor_read::<tables::BlockBodyIndices>()?;
let mut tx_cursor = self.tx.cursor_read::<tables::Transactions>()?;
for entry in body_cursor.walk_range(range)? {
let (_, body) = entry?;
let tx_num_range = body.tx_num_range();
if tx_num_range.is_empty() {
results.push(Vec::new());
} else {
results.push(
tx_cursor
.walk_range(tx_num_range)?
.map(|result| result.map(|(_, tx)| tx.into()))
.collect::<Result<Vec<_>, _>>()?,
);
}
}
Ok(results)
}
fn transactions_by_tx_range(
&self,
range: impl RangeBounds<TxNumber>,
) -> ProviderResult<Vec<TransactionSignedNoHash>> {
Ok(self
.tx
.cursor_read::<tables::Transactions>()?
.walk_range(range)?
.map(|entry| entry.map(|tx| tx.1))
.collect::<Result<Vec<_>, _>>()?)
}
fn senders_by_tx_range(
&self,
range: impl RangeBounds<TxNumber>,
) -> ProviderResult<Vec<Address>> {
Ok(self
.tx
.cursor_read::<tables::TxSenders>()?
.walk_range(range)?
.map(|entry| entry.map(|sender| sender.1))
.collect::<Result<Vec<_>, _>>()?)
}
fn transaction_sender(&self, id: TxNumber) -> ProviderResult<Option<Address>> {
Ok(self.tx.get::<tables::TxSenders>(id)?)
}
}
impl<TX: DbTx> ReceiptProvider for DatabaseProvider<TX> {
fn receipt(&self, id: TxNumber) -> ProviderResult<Option<Receipt>> {
Ok(self.tx.get::<tables::Receipts>(id)?)
}
fn receipt_by_hash(&self, hash: TxHash) -> ProviderResult<Option<Receipt>> {
if let Some(id) = self.transaction_id(hash)? {
self.receipt(id)
} else {
Ok(None)
}
}
fn receipts_by_block(&self, block: BlockHashOrNumber) -> ProviderResult<Option<Vec<Receipt>>> {
if let Some(number) = self.convert_hash_or_number(block)? {
if let Some(body) = self.block_body_indices(number)? {
let tx_range = body.tx_num_range();
return if tx_range.is_empty() {
Ok(Some(Vec::new()))
} else {
let mut receipts_cursor = self.tx.cursor_read::<tables::Receipts>()?;
let receipts = receipts_cursor
.walk_range(tx_range)?
.map(|result| result.map(|(_, receipt)| receipt))
.collect::<Result<Vec<_>, _>>()?;
Ok(Some(receipts))
}
}
}
Ok(None)
}
}
impl<TX: DbTx> WithdrawalsProvider for DatabaseProvider<TX> {
fn withdrawals_by_block(
&self,
id: BlockHashOrNumber,
timestamp: u64,
) -> ProviderResult<Option<Vec<Withdrawal>>> {
if self.chain_spec.is_shanghai_active_at_timestamp(timestamp) {
if let Some(number) = self.convert_hash_or_number(id)? {
// If we are past shanghai, then all blocks should have a withdrawal list, even if
// empty
let withdrawals = self
.tx
.get::<tables::BlockWithdrawals>(number)
.map(|w| w.map(|w| w.withdrawals))?
.unwrap_or_default();
return Ok(Some(withdrawals))
}
}
Ok(None)
}
fn latest_withdrawal(&self) -> ProviderResult<Option<Withdrawal>> {
let latest_block_withdrawal = self.tx.cursor_read::<tables::BlockWithdrawals>()?.last()?;
Ok(latest_block_withdrawal
.and_then(|(_, mut block_withdrawal)| block_withdrawal.withdrawals.pop()))
}
}
impl<TX: DbTx> EvmEnvProvider for DatabaseProvider<TX> {
fn fill_env_at(
&self,
cfg: &mut CfgEnv,
block_env: &mut BlockEnv,
at: BlockHashOrNumber,
) -> ProviderResult<()> {
let hash = self.convert_number(at)?.ok_or(ProviderError::HeaderNotFound(at))?;
let header = self.header(&hash)?.ok_or(ProviderError::HeaderNotFound(at))?;
self.fill_env_with_header(cfg, block_env, &header)
}
fn fill_env_with_header(
&self,
cfg: &mut CfgEnv,
block_env: &mut BlockEnv,
header: &Header,
) -> ProviderResult<()> {
let total_difficulty = self
.header_td_by_number(header.number)?
.ok_or_else(|| ProviderError::HeaderNotFound(header.number.into()))?;
fill_cfg_and_block_env(cfg, block_env, &self.chain_spec, header, total_difficulty);
Ok(())
}
fn fill_block_env_at(
&self,
block_env: &mut BlockEnv,
at: BlockHashOrNumber,
) -> ProviderResult<()> {
let hash = self.convert_number(at)?.ok_or(ProviderError::HeaderNotFound(at))?;
let header = self.header(&hash)?.ok_or(ProviderError::HeaderNotFound(at))?;
self.fill_block_env_with_header(block_env, &header)
}
fn fill_block_env_with_header(
&self,
block_env: &mut BlockEnv,
header: &Header,
) -> ProviderResult<()> {
let total_difficulty = self
.header_td_by_number(header.number)?
.ok_or_else(|| ProviderError::HeaderNotFound(header.number.into()))?;
let spec_id = revm_spec(
&self.chain_spec,
Head {
number: header.number,
timestamp: header.timestamp,
difficulty: header.difficulty,
total_difficulty,
// Not required
hash: Default::default(),
},
);
let after_merge = spec_id >= SpecId::MERGE;
fill_block_env(block_env, &self.chain_spec, header, after_merge);
Ok(())
}
fn fill_cfg_env_at(&self, cfg: &mut CfgEnv, at: BlockHashOrNumber) -> ProviderResult<()> {
let hash = self.convert_number(at)?.ok_or(ProviderError::HeaderNotFound(at))?;
let header = self.header(&hash)?.ok_or(ProviderError::HeaderNotFound(at))?;
self.fill_cfg_env_with_header(cfg, &header)
}
fn fill_cfg_env_with_header(&self, cfg: &mut CfgEnv, header: &Header) -> ProviderResult<()> {
let total_difficulty = self
.header_td_by_number(header.number)?
.ok_or_else(|| ProviderError::HeaderNotFound(header.number.into()))?;
fill_cfg_env(cfg, &self.chain_spec, header, total_difficulty);
Ok(())
}
}
impl<TX: DbTx> StageCheckpointReader for DatabaseProvider<TX> {
fn get_stage_checkpoint(&self, id: StageId) -> ProviderResult<Option<StageCheckpoint>> {
Ok(self.tx.get::<tables::SyncStage>(id.to_string())?)
}
/// Get stage checkpoint progress.
fn get_stage_checkpoint_progress(&self, id: StageId) -> ProviderResult<Option<Vec<u8>>> {
Ok(self.tx.get::<tables::SyncStageProgress>(id.to_string())?)
}
}
impl<TX: DbTxMut> StageCheckpointWriter for DatabaseProvider<TX> {
/// Save stage checkpoint progress.
fn save_stage_checkpoint_progress(
&self,
id: StageId,
checkpoint: Vec<u8>,
) -> ProviderResult<()> {
Ok(self.tx.put::<tables::SyncStageProgress>(id.to_string(), checkpoint)?)
}
/// Save stage checkpoint.
fn save_stage_checkpoint(
&self,
id: StageId,
checkpoint: StageCheckpoint,
) -> ProviderResult<()> {
Ok(self.tx.put::<tables::SyncStage>(id.to_string(), checkpoint)?)
}
fn update_pipeline_stages(
&self,
block_number: BlockNumber,
drop_stage_checkpoint: bool,
) -> ProviderResult<()> {
// iterate over all existing stages in the table and update its progress.
let mut cursor = self.tx.cursor_write::<tables::SyncStage>()?;
for stage_id in StageId::ALL {
let (_, checkpoint) = cursor.seek_exact(stage_id.to_string())?.unwrap_or_default();
cursor.upsert(
stage_id.to_string(),
StageCheckpoint {
block_number,
..if drop_stage_checkpoint { Default::default() } else { checkpoint }
},
)?;
}
Ok(())
}
}
impl<TX: DbTx> StorageReader for DatabaseProvider<TX> {
fn plain_state_storages(
&self,
addresses_with_keys: impl IntoIterator<Item = (Address, impl IntoIterator<Item = B256>)>,
) -> ProviderResult<Vec<(Address, Vec<StorageEntry>)>> {
let mut plain_storage = self.tx.cursor_dup_read::<tables::PlainStorageState>()?;
addresses_with_keys
.into_iter()
.map(|(address, storage)| {
storage
.into_iter()
.map(|key| -> ProviderResult<_> {
Ok(plain_storage
.seek_by_key_subkey(address, key)?
.filter(|v| v.key == key)
.unwrap_or_else(|| StorageEntry { key, value: Default::default() }))
})
.collect::<ProviderResult<Vec<_>>>()
.map(|storage| (address, storage))
})
.collect::<ProviderResult<Vec<(_, _)>>>()
}
fn changed_storages_with_range(
&self,
range: RangeInclusive<BlockNumber>,
) -> ProviderResult<BTreeMap<Address, BTreeSet<B256>>> {
self.tx
.cursor_read::<tables::StorageChangeSet>()?
.walk_range(BlockNumberAddress::range(range))?
// fold all storages and save its old state so we can remove it from HashedStorage
// it is needed as it is dup table.
.try_fold(BTreeMap::new(), |mut accounts: BTreeMap<Address, BTreeSet<B256>>, entry| {
let (BlockNumberAddress((_, address)), storage_entry) = entry?;
accounts.entry(address).or_default().insert(storage_entry.key);
Ok(accounts)
})
}
fn changed_storages_and_blocks_with_range(
&self,
range: RangeInclusive<BlockNumber>,
) -> ProviderResult<BTreeMap<(Address, B256), Vec<u64>>> {
let mut changeset_cursor = self.tx.cursor_read::<tables::StorageChangeSet>()?;
let storage_changeset_lists =
changeset_cursor.walk_range(BlockNumberAddress::range(range))?.try_fold(
BTreeMap::new(),
|mut storages: BTreeMap<(Address, B256), Vec<u64>>, entry| -> ProviderResult<_> {
let (index, storage) = entry?;
storages
.entry((index.address(), storage.key))
.or_default()
.push(index.block_number());
Ok(storages)
},
)?;
Ok(storage_changeset_lists)
}
}
impl<TX: DbTxMut + DbTx> HashingWriter for DatabaseProvider<TX> {
fn insert_hashes(
&self,
range: RangeInclusive<BlockNumber>,
end_block_hash: B256,
expected_state_root: B256,
) -> ProviderResult<()> {
// Initialize prefix sets.
let mut account_prefix_set = PrefixSetMut::default();
let mut storage_prefix_set: HashMap<B256, PrefixSetMut> = HashMap::default();
let mut destroyed_accounts = HashSet::default();
let mut durations_recorder = metrics::DurationsRecorder::default();
// storage hashing stage
{
let lists = self.changed_storages_with_range(range.clone())?;
let storages = self.plain_state_storages(lists)?;
let storage_entries = self.insert_storage_for_hashing(storages)?;
for (hashed_address, hashed_slots) in storage_entries {
account_prefix_set.insert(Nibbles::unpack(hashed_address));
for slot in hashed_slots {
storage_prefix_set
.entry(hashed_address)
.or_default()
.insert(Nibbles::unpack(slot));
}
}
}
durations_recorder.record_relative(metrics::Action::InsertStorageHashing);
// account hashing stage
{
let lists = self.changed_accounts_with_range(range.clone())?;
let accounts = self.basic_accounts(lists)?;
let hashed_addresses = self.insert_account_for_hashing(accounts)?;
for (hashed_address, account) in hashed_addresses {
account_prefix_set.insert(Nibbles::unpack(hashed_address));
if account.is_none() {
destroyed_accounts.insert(hashed_address);
}
}
}
durations_recorder.record_relative(metrics::Action::InsertAccountHashing);
// merkle tree
{
// This is the same as `StateRoot::incremental_root_with_updates`, only the prefix sets
// are pre-loaded.
let (state_root, trie_updates) = StateRoot::new(&self.tx)
.with_changed_account_prefixes(account_prefix_set.freeze())
.with_changed_storage_prefixes(
storage_prefix_set.into_iter().map(|(k, v)| (k, v.freeze())).collect(),
)
.with_destroyed_accounts(destroyed_accounts)
.root_with_updates()
.map_err(Into::<reth_db::DatabaseError>::into)?;
if state_root != expected_state_root {
return Err(ProviderError::StateRootMismatch(Box::new(RootMismatch {
root: GotExpected { got: state_root, expected: expected_state_root },
block_number: *range.end(),
block_hash: end_block_hash,
})))
}
trie_updates.flush(&self.tx)?;
}
durations_recorder.record_relative(metrics::Action::InsertMerkleTree);
debug!(target: "providers::db", ?range, actions = ?durations_recorder.actions, "Inserted hashes");
Ok(())
}
fn unwind_storage_hashing(
&self,
range: Range<BlockNumberAddress>,
) -> ProviderResult<HashMap<B256, BTreeSet<B256>>> {
let mut hashed_storage = self.tx.cursor_dup_write::<tables::HashedStorage>()?;
// Aggregate all block changesets and make list of accounts that have been changed.
let hashed_storages = self
.tx
.cursor_read::<tables::StorageChangeSet>()?
.walk_range(range)?
.collect::<Result<Vec<_>, _>>()?
.into_iter()
.rev()
// fold all account to get the old balance/nonces and account that needs to be removed
.fold(
BTreeMap::new(),
|mut accounts: BTreeMap<(Address, B256), U256>,
(BlockNumberAddress((_, address)), storage_entry)| {
accounts.insert((address, storage_entry.key), storage_entry.value);
accounts
},
)
.into_iter()
// hash addresses and collect it inside sorted BTreeMap.
// We are doing keccak only once per address.
.map(|((address, key), value)| ((keccak256(address), keccak256(key)), value))
.collect::<BTreeMap<_, _>>();
let mut hashed_storage_keys: HashMap<B256, BTreeSet<B256>> = HashMap::default();
for (hashed_address, hashed_slot) in hashed_storages.keys() {
hashed_storage_keys.entry(*hashed_address).or_default().insert(*hashed_slot);
}
hashed_storages
.into_iter()
// Apply values to HashedStorage (if Value is zero just remove it);
.try_for_each(|((hashed_address, key), value)| -> ProviderResult<()> {
if hashed_storage
.seek_by_key_subkey(hashed_address, key)?
.filter(|entry| entry.key == key)
.is_some()
{
hashed_storage.delete_current()?;
}
if value != U256::ZERO {
hashed_storage.upsert(hashed_address, StorageEntry { key, value })?;
}
Ok(())
})?;
Ok(hashed_storage_keys)
}
fn insert_storage_for_hashing(
&self,
storages: impl IntoIterator<Item = (Address, impl IntoIterator<Item = StorageEntry>)>,
) -> ProviderResult<HashMap<B256, BTreeSet<B256>>> {
// hash values
let hashed_storages =
storages.into_iter().fold(BTreeMap::new(), |mut map, (address, storage)| {
let storage = storage.into_iter().fold(BTreeMap::new(), |mut map, entry| {
map.insert(keccak256(entry.key), entry.value);
map
});
map.insert(keccak256(address), storage);
map
});
let hashed_storage_keys =
HashMap::from_iter(hashed_storages.iter().map(|(hashed_address, entries)| {
(*hashed_address, BTreeSet::from_iter(entries.keys().copied()))
}));
let mut hashed_storage_cursor = self.tx.cursor_dup_write::<tables::HashedStorage>()?;
// Hash the address and key and apply them to HashedStorage (if Storage is None
// just remove it);
hashed_storages.into_iter().try_for_each(|(hashed_address, storage)| {
storage.into_iter().try_for_each(|(key, value)| -> ProviderResult<()> {
if hashed_storage_cursor
.seek_by_key_subkey(hashed_address, key)?
.filter(|entry| entry.key == key)
.is_some()
{
hashed_storage_cursor.delete_current()?;
}
if value != U256::ZERO {
hashed_storage_cursor.upsert(hashed_address, StorageEntry { key, value })?;
}
Ok(())
})
})?;
Ok(hashed_storage_keys)
}
fn unwind_account_hashing(
&self,
range: RangeInclusive<BlockNumber>,
) -> ProviderResult<BTreeMap<B256, Option<Account>>> {
let mut hashed_accounts_cursor = self.tx.cursor_write::<tables::HashedAccount>()?;
// Aggregate all block changesets and make a list of accounts that have been changed.
let hashed_accounts = self
.tx
.cursor_read::<tables::AccountChangeSet>()?
.walk_range(range)?
.collect::<Result<Vec<_>, _>>()?
.into_iter()
.rev()
// fold all account to get the old balance/nonces and account that needs to be removed
.fold(
BTreeMap::new(),
|mut accounts: BTreeMap<Address, Option<Account>>, (_, account_before)| {
accounts.insert(account_before.address, account_before.info);
accounts
},
)
.into_iter()
// hash addresses and collect it inside sorted BTreeMap.
// We are doing keccak only once per address.
.map(|(address, account)| (keccak256(address), account))
.collect::<BTreeMap<_, _>>();
hashed_accounts
.iter()
// Apply values to HashedState (if Account is None remove it);
.try_for_each(|(hashed_address, account)| -> ProviderResult<()> {
if let Some(account) = account {
hashed_accounts_cursor.upsert(*hashed_address, *account)?;
} else if hashed_accounts_cursor.seek_exact(*hashed_address)?.is_some() {
hashed_accounts_cursor.delete_current()?;
}
Ok(())
})?;
Ok(hashed_accounts)
}
fn insert_account_for_hashing(
&self,
accounts: impl IntoIterator<Item = (Address, Option<Account>)>,
) -> ProviderResult<BTreeMap<B256, Option<Account>>> {
let mut hashed_accounts_cursor = self.tx.cursor_write::<tables::HashedAccount>()?;
let hashed_accounts = accounts.into_iter().fold(
BTreeMap::new(),
|mut map: BTreeMap<B256, Option<Account>>, (address, account)| {
map.insert(keccak256(address), account);
map
},
);
hashed_accounts.iter().try_for_each(|(hashed_address, account)| -> ProviderResult<()> {
if let Some(account) = account {
hashed_accounts_cursor.upsert(*hashed_address, *account)?
} else if hashed_accounts_cursor.seek_exact(*hashed_address)?.is_some() {
hashed_accounts_cursor.delete_current()?;
}
Ok(())
})?;
Ok(hashed_accounts)
}
}
impl<TX: DbTxMut + DbTx> HistoryWriter for DatabaseProvider<TX> {
fn update_history_indices(&self, range: RangeInclusive<BlockNumber>) -> ProviderResult<()> {
// account history stage
{
let indices = self.changed_accounts_and_blocks_with_range(range.clone())?;
self.insert_account_history_index(indices)?;
}
// storage history stage
{
let indices = self.changed_storages_and_blocks_with_range(range)?;
self.insert_storage_history_index(indices)?;
}
Ok(())
}
fn insert_storage_history_index(
&self,
storage_transitions: BTreeMap<(Address, B256), Vec<u64>>,
) -> ProviderResult<()> {
self.append_history_index::<_, tables::StorageHistory>(
storage_transitions,
|(address, storage_key), highest_block_number| {
StorageShardedKey::new(address, storage_key, highest_block_number)
},
)
}
fn insert_account_history_index(
&self,
account_transitions: BTreeMap<Address, Vec<u64>>,
) -> ProviderResult<()> {
self.append_history_index::<_, tables::AccountHistory>(account_transitions, ShardedKey::new)
}
fn unwind_storage_history_indices(
&self,
range: Range<BlockNumberAddress>,
) -> ProviderResult<usize> {
let storage_changesets = self
.tx
.cursor_read::<tables::StorageChangeSet>()?
.walk_range(range)?
.collect::<Result<Vec<_>, _>>()?;
let changesets = storage_changesets.len();
let last_indices = storage_changesets
.into_iter()
// reverse so we can get lowest block number where we need to unwind account.
.rev()
// fold all storages and get last block number
.fold(
BTreeMap::new(),
|mut accounts: BTreeMap<(Address, B256), u64>, (index, storage)| {
// we just need address and lowest block number.
accounts.insert((index.address(), storage.key), index.block_number());
accounts
},
);
let mut cursor = self.tx.cursor_write::<tables::StorageHistory>()?;
for ((address, storage_key), rem_index) in last_indices {
let partial_shard = unwind_history_shards::<_, tables::StorageHistory, _>(
&mut cursor,
StorageShardedKey::last(address, storage_key),
rem_index,
|storage_sharded_key| {
storage_sharded_key.address == address &&
storage_sharded_key.sharded_key.key == storage_key
},
)?;
// Check the last returned partial shard.
// If it's not empty, the shard needs to be reinserted.
if !partial_shard.is_empty() {
cursor.insert(
StorageShardedKey::last(address, storage_key),
BlockNumberList::new_pre_sorted(partial_shard),
)?;
}
}
Ok(changesets)
}
fn unwind_account_history_indices(
&self,
range: RangeInclusive<BlockNumber>,
) -> ProviderResult<usize> {
let account_changeset = self
.tx
.cursor_read::<tables::AccountChangeSet>()?
.walk_range(range)?
.collect::<Result<Vec<_>, _>>()?;
let changesets = account_changeset.len();
let last_indices = account_changeset
.into_iter()
// reverse so we can get lowest block number where we need to unwind account.
.rev()
// fold all account and get last block number
.fold(BTreeMap::new(), |mut accounts: BTreeMap<Address, u64>, (index, account)| {
// we just need address and lowest block number.
accounts.insert(account.address, index);
accounts
});
// Unwind the account history index.
let mut cursor = self.tx.cursor_write::<tables::AccountHistory>()?;
for (address, rem_index) in last_indices {
let partial_shard = unwind_history_shards::<_, tables::AccountHistory, _>(
&mut cursor,
ShardedKey::last(address),
rem_index,
|sharded_key| sharded_key.key == address,
)?;
// Check the last returned partial shard.
// If it's not empty, the shard needs to be reinserted.
if !partial_shard.is_empty() {
cursor.insert(
ShardedKey::last(address),
BlockNumberList::new_pre_sorted(partial_shard),
)?;
}
}
Ok(changesets)
}
}
impl<TX: DbTxMut + DbTx> BlockExecutionWriter for DatabaseProvider<TX> {
/// Return range of blocks and its execution result
fn get_or_take_block_and_execution_range<const TAKE: bool>(
&self,
chain_spec: &ChainSpec,
range: RangeInclusive<BlockNumber>,
) -> ProviderResult<Chain> {
if TAKE {
let storage_range = BlockNumberAddress::range(range.clone());
// Initialize prefix sets.
let mut account_prefix_set = PrefixSetMut::default();
let mut storage_prefix_set: HashMap<B256, PrefixSetMut> = HashMap::default();
let mut destroyed_accounts = HashSet::default();
// Unwind account hashes. Add changed accounts to account prefix set.
let hashed_addresses = self.unwind_account_hashing(range.clone())?;
for (hashed_address, account) in hashed_addresses {
account_prefix_set.insert(Nibbles::unpack(hashed_address));
if account.is_none() {
destroyed_accounts.insert(hashed_address);
}
}
// Unwind account history indices.
self.unwind_account_history_indices(range.clone())?;
// Unwind storage hashes. Add changed account and storage keys to corresponding prefix
// sets.
let storage_entries = self.unwind_storage_hashing(storage_range.clone())?;
for (hashed_address, hashed_slots) in storage_entries {
account_prefix_set.insert(Nibbles::unpack(hashed_address));
for slot in hashed_slots {
storage_prefix_set
.entry(hashed_address)
.or_default()
.insert(Nibbles::unpack(slot));
}
}
// Unwind storage history indices.
self.unwind_storage_history_indices(storage_range)?;
// Calculate the reverted merkle root.
// This is the same as `StateRoot::incremental_root_with_updates`, only the prefix sets
// are pre-loaded.
let (new_state_root, trie_updates) = StateRoot::new(&self.tx)
.with_changed_account_prefixes(account_prefix_set.freeze())
.with_changed_storage_prefixes(
storage_prefix_set.into_iter().map(|(k, v)| (k, v.freeze())).collect(),
)
.with_destroyed_accounts(destroyed_accounts)
.root_with_updates()
.map_err(Into::<reth_db::DatabaseError>::into)?;
let parent_number = range.start().saturating_sub(1);
let parent_state_root = self
.header_by_number(parent_number)?
.ok_or_else(|| ProviderError::HeaderNotFound(parent_number.into()))?
.state_root;
// state root should be always correct as we are reverting state.
// but for sake of double verification we will check it again.
if new_state_root != parent_state_root {
let parent_hash = self
.block_hash(parent_number)?
.ok_or_else(|| ProviderError::HeaderNotFound(parent_number.into()))?;
return Err(ProviderError::UnwindStateRootMismatch(Box::new(RootMismatch {
root: GotExpected { got: new_state_root, expected: parent_state_root },
block_number: parent_number,
block_hash: parent_hash,
})))
}
trie_updates.flush(&self.tx)?;
}
// get blocks
let blocks = self.get_take_block_range::<TAKE>(chain_spec, range.clone())?;
let unwind_to = blocks.first().map(|b| b.number.saturating_sub(1));
// get execution res
let execution_state = self.unwind_or_peek_state::<TAKE>(range.clone())?;
// remove block bodies it is needed for both get block range and get block execution results
// that is why it is deleted afterwards.
if TAKE {
// rm block bodies
self.get_or_take::<tables::BlockBodyIndices, TAKE>(range)?;
// Update pipeline progress
if let Some(fork_number) = unwind_to {
self.update_pipeline_stages(fork_number, true)?;
}
}
Ok(Chain::new(blocks, execution_state))
}
}
impl<TX: DbTxMut + DbTx> BlockWriter for DatabaseProvider<TX> {
fn insert_block(
&self,
block: SealedBlock,
senders: Option<Vec<Address>>,
prune_modes: Option<&PruneModes>,
) -> ProviderResult<StoredBlockBodyIndices> {
let block_number = block.number;
let mut durations_recorder = metrics::DurationsRecorder::default();
self.tx.put::<tables::CanonicalHeaders>(block_number, block.hash())?;
durations_recorder.record_relative(metrics::Action::InsertCanonicalHeaders);
// Put header with canonical hashes.
self.tx.put::<tables::Headers>(block_number, block.header.as_ref().clone())?;
durations_recorder.record_relative(metrics::Action::InsertHeaders);
self.tx.put::<tables::HeaderNumbers>(block.hash(), block_number)?;
durations_recorder.record_relative(metrics::Action::InsertHeaderNumbers);
// total difficulty
let ttd = if block_number == 0 {
block.difficulty
} else {
let parent_block_number = block_number - 1;
let parent_ttd = self.header_td_by_number(parent_block_number)?.unwrap_or_default();
durations_recorder.record_relative(metrics::Action::GetParentTD);
parent_ttd + block.difficulty
};
self.tx.put::<tables::HeaderTD>(block_number, ttd.into())?;
durations_recorder.record_relative(metrics::Action::InsertHeaderTD);
// insert body ommers data
if !block.ommers.is_empty() {
self.tx.put::<tables::BlockOmmers>(
block_number,
StoredBlockOmmers { ommers: block.ommers },
)?;
durations_recorder.record_relative(metrics::Action::InsertBlockOmmers);
}
let mut next_tx_num = self
.tx
.cursor_read::<tables::Transactions>()?
.last()?
.map(|(n, _)| n + 1)
.unwrap_or_default();
durations_recorder.record_relative(metrics::Action::GetNextTxNum);
let first_tx_num = next_tx_num;
let tx_count = block.body.len() as u64;
let senders_len = senders.as_ref().map(|s| s.len());
let tx_iter = if Some(block.body.len()) == senders_len {
block.body.into_iter().zip(senders.unwrap()).collect::<Vec<(_, _)>>()
} else {
let senders = TransactionSigned::recover_signers(&block.body, block.body.len())
.ok_or(ProviderError::SenderRecoveryError)?;
durations_recorder.record_relative(metrics::Action::RecoverSigners);
debug_assert_eq!(senders.len(), block.body.len(), "missing one or more senders");
block.body.into_iter().zip(senders).collect()
};
let mut tx_senders_elapsed = Duration::default();
let mut transactions_elapsed = Duration::default();
let mut tx_hash_numbers_elapsed = Duration::default();
for (transaction, sender) in tx_iter {
let hash = transaction.hash();
if prune_modes
.and_then(|modes| modes.sender_recovery)
.filter(|prune_mode| prune_mode.is_full())
.is_none()
{
let start = Instant::now();
self.tx.put::<tables::TxSenders>(next_tx_num, sender)?;
tx_senders_elapsed += start.elapsed();
}
let start = Instant::now();
self.tx.put::<tables::Transactions>(next_tx_num, transaction.into())?;
let elapsed = start.elapsed();
if elapsed > Duration::from_secs(1) {
warn!(
target: "providers::db",
?block_number,
tx_num = %next_tx_num,
hash = %hash,
?elapsed,
"Transaction insertion took too long"
);
}
transactions_elapsed += elapsed;
if prune_modes
.and_then(|modes| modes.transaction_lookup)
.filter(|prune_mode| prune_mode.is_full())
.is_none()
{
let start = Instant::now();
self.tx.put::<tables::TxHashNumber>(hash, next_tx_num)?;
tx_hash_numbers_elapsed += start.elapsed();
}
next_tx_num += 1;
}
durations_recorder.record_duration(metrics::Action::InsertTxSenders, tx_senders_elapsed);
durations_recorder
.record_duration(metrics::Action::InsertTransactions, transactions_elapsed);
durations_recorder
.record_duration(metrics::Action::InsertTxHashNumbers, tx_hash_numbers_elapsed);
if let Some(withdrawals) = block.withdrawals {
if !withdrawals.is_empty() {
self.tx.put::<tables::BlockWithdrawals>(
block_number,
StoredBlockWithdrawals { withdrawals },
)?;
durations_recorder.record_relative(metrics::Action::InsertBlockWithdrawals);
}
}
let block_indices = StoredBlockBodyIndices { first_tx_num, tx_count };
self.tx.put::<tables::BlockBodyIndices>(block_number, block_indices.clone())?;
durations_recorder.record_relative(metrics::Action::InsertBlockBodyIndices);
if !block_indices.is_empty() {
self.tx.put::<tables::TransactionBlock>(block_indices.last_tx_num(), block_number)?;
durations_recorder.record_relative(metrics::Action::InsertTransactionBlock);
}
debug!(
target: "providers::db",
?block_number,
actions = ?durations_recorder.actions,
"Inserted block"
);
Ok(block_indices)
}
fn append_blocks_with_bundle_state(
&self,
blocks: Vec<SealedBlockWithSenders>,
state: BundleStateWithReceipts,
prune_modes: Option<&PruneModes>,
) -> ProviderResult<()> {
if blocks.is_empty() {
return Ok(())
}
let new_tip = blocks.last().unwrap();
let new_tip_number = new_tip.number;
let first_number = blocks.first().unwrap().number;
let last = blocks.last().unwrap();
let last_block_number = last.number;
let last_block_hash = last.hash();
let expected_state_root = last.state_root;
let mut durations_recorder = metrics::DurationsRecorder::default();
// Insert the blocks
for block in blocks {
let (block, senders) = block.into_components();
self.insert_block(block, Some(senders), prune_modes)?;
durations_recorder.record_relative(metrics::Action::InsertBlock);
}
// Write state and changesets to the database.
// Must be written after blocks because of the receipt lookup.
state.write_to_db(self.tx_ref(), OriginalValuesKnown::No)?;
durations_recorder.record_relative(metrics::Action::InsertState);
self.insert_hashes(first_number..=last_block_number, last_block_hash, expected_state_root)?;
durations_recorder.record_relative(metrics::Action::InsertHashes);
self.update_history_indices(first_number..=last_block_number)?;
durations_recorder.record_relative(metrics::Action::InsertHistoryIndices);
// Update pipeline progress
self.update_pipeline_stages(new_tip_number, false)?;
durations_recorder.record_relative(metrics::Action::UpdatePipelineStages);
debug!(target: "providers::db", actions = ?durations_recorder.actions, "Appended blocks");
Ok(())
}
}
impl<TX: DbTx> PruneCheckpointReader for DatabaseProvider<TX> {
fn get_prune_checkpoint(
&self,
segment: PruneSegment,
) -> ProviderResult<Option<PruneCheckpoint>> {
Ok(self.tx.get::<tables::PruneCheckpoints>(segment)?)
}
}
impl<TX: DbTxMut> PruneCheckpointWriter for DatabaseProvider<TX> {
fn save_prune_checkpoint(
&self,
segment: PruneSegment,
checkpoint: PruneCheckpoint,
) -> ProviderResult<()> {
Ok(self.tx.put::<tables::PruneCheckpoints>(segment, checkpoint)?)
}
}