Files
nanoreth/crates/storage/db/benches/hash_keys.rs
Thomas Coratger 7c17c6e469 add doc_markdown clippy lint (#8552)
Co-authored-by: Alexey Shekhirin <a.shekhirin@gmail.com>
Co-authored-by: Matthias Seitz <matthias.seitz@outlook.de>
2024-06-03 13:21:45 +00:00

257 lines
7.7 KiB
Rust

#![allow(missing_docs)]
use criterion::{
black_box, criterion_group, criterion_main, measurement::WallTime, BenchmarkGroup, Criterion,
};
use pprof::criterion::{Output, PProfProfiler};
use proptest::{
arbitrary::Arbitrary,
prelude::{any_with, ProptestConfig},
strategy::{Strategy, ValueTree},
test_runner::TestRunner,
};
use reth_db::{cursor::DbCursorRW, TransactionHashNumbers};
use std::collections::HashSet;
criterion_group! {
name = benches;
config = Criterion::default().with_profiler(PProfProfiler::new(100, Output::Flamegraph(None)));
targets = hash_keys
}
criterion_main!(benches);
/// It benchmarks the insertion of rows into a table where `Keys` are hashes.
/// * `append`: Table is empty. Sorts during benchmark.
/// * `insert_sorted`: Table is preloaded with rows (same as batch size). Sorts during benchmark.
/// * `insert_unsorted`: Table is preloaded with rows (same as batch size).
/// * `put_sorted`: Table is preloaded with rows (same as batch size). Sorts during benchmark.
/// * `put_unsorted`: Table is preloaded with rows (same as batch size).
///
/// It does the above steps with different batches of rows. `10_000`, `100_000`, `1_000_000`. In the
/// end, the table statistics are shown (eg. number of pages, table size...)
pub fn hash_keys(c: &mut Criterion) {
let mut group = c.benchmark_group("Hash-Keys Table Insertion");
group.sample_size(10);
for size in [10_000, 100_000, 1_000_000] {
measure_table_insertion::<TransactionHashNumbers>(&mut group, size);
}
}
fn measure_table_insertion<T>(group: &mut BenchmarkGroup<'_, WallTime>, size: usize)
where
T: Table,
T::Key: Default
+ Clone
+ for<'de> serde::Deserialize<'de>
+ Arbitrary
+ serde::Serialize
+ Ord
+ std::hash::Hash,
T::Value: Default + Clone + for<'de> serde::Deserialize<'de> + Arbitrary + serde::Serialize,
{
let bench_db_path = Path::new(BENCH_DB_PATH);
let scenarios: Vec<(fn(_, _) -> _, &str)> = vec![
(append::<T>, "append_all"),
(append::<T>, "append_input"),
(insert::<T>, "insert_unsorted"),
(insert::<T>, "insert_sorted"),
(put::<T>, "put_unsorted"),
(put::<T>, "put_sorted"),
];
// `preload` is to be inserted into the database during the setup phase in all scenarios but
// `append`.
let (preload, unsorted_input) = generate_batches::<T>(size);
for (scenario, scenario_str) in scenarios {
// Append does not preload the table
let mut preload_size = size;
let mut input_size = size;
if scenario_str.contains("append") {
if scenario_str == "append_all" {
input_size = size * 2;
}
preload_size = 0;
}
// Setup phase before each benchmark iteration
let setup = || {
// Reset DB
let _ = fs::remove_dir_all(bench_db_path);
let db = Arc::try_unwrap(create_test_rw_db_with_path(bench_db_path)).unwrap();
let db = db.into_inner_db();
let mut unsorted_input = unsorted_input.clone();
if scenario_str == "append_all" {
unsorted_input.extend_from_slice(&preload);
}
if preload_size > 0 {
db.update(|tx| {
for (key, value) in &preload {
let _ = tx.put::<T>(key.clone(), value.clone());
}
})
.unwrap();
}
(unsorted_input, db)
};
// Iteration to be benchmarked
let execution = |(input, db)| {
let mut input: Vec<TableRow<T>> = input;
if scenario_str.contains("_sorted") || scenario_str.contains("append") {
input.sort_by(|a, b| a.0.cmp(&b.0));
}
scenario(db, input)
};
group.bench_function(
format!(
"{} | {scenario_str} | preload: {} | writing: {} ",
T::NAME,
preload_size,
input_size
),
|b| {
b.iter_with_setup(setup, execution);
},
);
// Execute once more to show table stats (doesn't count for benchmarking speed)
let db = execution(setup());
get_table_stats::<T>(db);
}
}
/// Generates two batches. The first is to be inserted into the database before running the
/// benchmark. The second is to be benchmarked with.
#[allow(clippy::type_complexity)]
fn generate_batches<T>(size: usize) -> (Vec<TableRow<T>>, Vec<TableRow<T>>)
where
T: Table,
T::Key: std::hash::Hash + Arbitrary,
T::Value: Arbitrary,
{
let strategy = proptest::collection::vec(
any_with::<TableRow<T>>((
<T::Key as Arbitrary>::Parameters::default(),
<T::Value as Arbitrary>::Parameters::default(),
)),
size,
)
.no_shrink()
.boxed();
let mut runner = TestRunner::new(ProptestConfig::default());
let mut preload = strategy.new_tree(&mut runner).unwrap().current();
let mut input = strategy.new_tree(&mut runner).unwrap().current();
let mut unique_keys = HashSet::new();
preload.retain(|(k, _)| unique_keys.insert(k.clone()));
input.retain(|(k, _)| unique_keys.insert(k.clone()));
(preload, input)
}
fn append<T>(db: DatabaseEnv, input: Vec<(<T as Table>::Key, <T as Table>::Value)>) -> DatabaseEnv
where
T: Table,
{
{
let tx = db.tx_mut().expect("tx");
let mut crsr = tx.cursor_write::<T>().expect("cursor");
black_box({
for (k, v) in input {
crsr.append(k, v).expect("submit");
}
tx.inner.commit().unwrap()
});
}
db
}
fn insert<T>(db: DatabaseEnv, input: Vec<(<T as Table>::Key, <T as Table>::Value)>) -> DatabaseEnv
where
T: Table,
{
{
let tx = db.tx_mut().expect("tx");
let mut crsr = tx.cursor_write::<T>().expect("cursor");
black_box({
for (k, v) in input {
crsr.insert(k, v).expect("submit");
}
tx.inner.commit().unwrap()
});
}
db
}
fn put<T>(db: DatabaseEnv, input: Vec<(<T as Table>::Key, <T as Table>::Value)>) -> DatabaseEnv
where
T: Table,
{
{
let tx = db.tx_mut().expect("tx");
black_box({
for (k, v) in input {
tx.put::<T>(k, v).expect("submit");
}
tx.inner.commit().unwrap()
});
}
db
}
#[derive(Debug)]
#[allow(dead_code)]
struct TableStats {
page_size: usize,
leaf_pages: usize,
branch_pages: usize,
overflow_pages: usize,
num_pages: usize,
size: usize,
}
fn get_table_stats<T>(db: DatabaseEnv)
where
T: Table,
{
db.view(|tx| {
let table_db = tx.inner.open_db(Some(T::NAME)).map_err(|_| "Could not open db.").unwrap();
println!(
"{:?}\n",
tx.inner
.db_stat(&table_db)
.map_err(|_| format!("Could not find table: {}", T::NAME))
.map(|stats| {
let num_pages =
stats.leaf_pages() + stats.branch_pages() + stats.overflow_pages();
let size = num_pages * stats.page_size() as usize;
TableStats {
page_size: stats.page_size() as usize,
leaf_pages: stats.leaf_pages(),
branch_pages: stats.branch_pages(),
overflow_pages: stats.overflow_pages(),
num_pages,
size,
}
})
.unwrap()
);
})
.unwrap();
}
include!("./utils.rs");