Files
nanoreth/crates/primitives/src/block.rs
2023-11-06 12:45:20 +00:00

534 lines
21 KiB
Rust

use crate::{Address, Header, SealedHeader, TransactionSigned, Withdrawal, B256};
use alloy_rlp::{RlpDecodable, RlpEncodable};
use reth_codecs::derive_arbitrary;
use serde::{Deserialize, Serialize};
use std::ops::Deref;
pub use reth_rpc_types::{
BlockHashOrNumber, BlockId, BlockNumHash, BlockNumberOrTag, ForkBlock, RpcBlockHash,
};
/// Ethereum full block.
///
/// Withdrawals can be optionally included at the end of the RLP encoded message.
#[derive(
Debug, Clone, PartialEq, Eq, Default, Serialize, Deserialize, RlpEncodable, RlpDecodable,
)]
#[derive_arbitrary(rlp, 25)]
#[rlp(trailing)]
pub struct Block {
/// Block header.
pub header: Header,
/// Transactions in this block.
pub body: Vec<TransactionSigned>,
/// Ommers/uncles header.
pub ommers: Vec<Header>,
/// Block withdrawals.
pub withdrawals: Option<Vec<Withdrawal>>,
}
impl Block {
/// Create SealedBLock that will create all header hashes.
pub fn seal_slow(self) -> SealedBlock {
SealedBlock {
header: self.header.seal_slow(),
body: self.body,
ommers: self.ommers,
withdrawals: self.withdrawals,
}
}
/// Seal the block with a known hash.
///
/// WARNING: This method does not perform validation whether the hash is correct.
pub fn seal(self, hash: B256) -> SealedBlock {
SealedBlock {
header: self.header.seal(hash),
body: self.body,
ommers: self.ommers,
withdrawals: self.withdrawals,
}
}
/// Transform into a [`BlockWithSenders`].
pub fn with_senders(self, senders: Vec<Address>) -> BlockWithSenders {
assert_eq!(self.body.len(), senders.len(), "Unequal number of senders");
BlockWithSenders { block: self, senders }
}
/// Returns whether or not the block contains any blob transactions.
pub fn has_blob_transactions(&self) -> bool {
self.body.iter().any(|tx| tx.is_eip4844())
}
/// Calculates a heuristic for the in-memory size of the [Block].
#[inline]
pub fn size(&self) -> usize {
self.header.size() +
// take into account capacity
self.body.iter().map(TransactionSigned::size).sum::<usize>() + self.body.capacity() * std::mem::size_of::<TransactionSigned>() +
self.ommers.iter().map(Header::size).sum::<usize>() + self.ommers.capacity() * std::mem::size_of::<Header>() +
self.withdrawals.as_ref().map(|w| w.iter().map(Withdrawal::size).sum::<usize>() + w.capacity() * std::mem::size_of::<Withdrawal>()).unwrap_or(std::mem::size_of::<Option<Vec<Withdrawal>>>())
}
}
impl Deref for Block {
type Target = Header;
fn deref(&self) -> &Self::Target {
&self.header
}
}
/// Sealed block with senders recovered from transactions.
#[derive(Debug, Clone, PartialEq, Eq, Default)]
pub struct BlockWithSenders {
/// Block
pub block: Block,
/// List of senders that match the transactions in the block
pub senders: Vec<Address>,
}
impl BlockWithSenders {
/// New block with senders. Return none if len of tx and senders does not match
pub fn new(block: Block, senders: Vec<Address>) -> Option<Self> {
(!block.body.len() != senders.len()).then_some(Self { block, senders })
}
/// Split Structure to its components
pub fn into_components(self) -> (Block, Vec<Address>) {
(self.block, self.senders)
}
}
impl Deref for BlockWithSenders {
type Target = Block;
fn deref(&self) -> &Self::Target {
&self.block
}
}
#[cfg(any(test, feature = "test-utils"))]
impl std::ops::DerefMut for BlockWithSenders {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.block
}
}
/// Sealed Ethereum full block.
///
/// Withdrawals can be optionally included at the end of the RLP encoded message.
#[derive_arbitrary(rlp, 10)]
#[derive(
Debug, Clone, PartialEq, Eq, Default, Serialize, Deserialize, RlpEncodable, RlpDecodable,
)]
#[rlp(trailing)]
pub struct SealedBlock {
/// Locked block header.
pub header: SealedHeader,
/// Transactions with signatures.
pub body: Vec<TransactionSigned>,
/// Ommer/uncle headers
pub ommers: Vec<Header>,
/// Block withdrawals.
pub withdrawals: Option<Vec<Withdrawal>>,
}
impl SealedBlock {
/// Create a new sealed block instance using the sealed header and block body.
#[inline]
pub fn new(header: SealedHeader, body: BlockBody) -> Self {
let BlockBody { transactions, ommers, withdrawals } = body;
Self { header, body: transactions, ommers, withdrawals }
}
/// Header hash.
#[inline]
pub fn hash(&self) -> B256 {
self.header.hash()
}
/// Splits the sealed block into underlying components
#[inline]
pub fn split(self) -> (SealedHeader, Vec<TransactionSigned>, Vec<Header>) {
(self.header, self.body, self.ommers)
}
/// Splits the [BlockBody] and [SealedHeader] into separate components
#[inline]
pub fn split_header_body(self) -> (SealedHeader, BlockBody) {
(
self.header,
BlockBody {
transactions: self.body,
ommers: self.ommers,
withdrawals: self.withdrawals,
},
)
}
/// Returns only the blob transactions, if any, from the block body.
pub fn blob_transactions(&self) -> Vec<&TransactionSigned> {
self.body.iter().filter(|tx| tx.is_eip4844()).collect()
}
/// Expensive operation that recovers transaction signer. See [SealedBlockWithSenders].
pub fn senders(&self) -> Option<Vec<Address>> {
TransactionSigned::recover_signers(&self.body, self.body.len())
}
/// Seal sealed block with recovered transaction senders.
pub fn seal_with_senders(self) -> Option<SealedBlockWithSenders> {
self.try_seal_with_senders().ok()
}
/// Seal sealed block with recovered transaction senders.
pub fn try_seal_with_senders(self) -> Result<SealedBlockWithSenders, Self> {
match self.senders() {
Some(senders) => Ok(SealedBlockWithSenders { block: self, senders }),
None => Err(self),
}
}
/// Unseal the block
pub fn unseal(self) -> Block {
Block {
header: self.header.unseal(),
body: self.body,
ommers: self.ommers,
withdrawals: self.withdrawals,
}
}
/// Calculates a heuristic for the in-memory size of the [SealedBlock].
#[inline]
pub fn size(&self) -> usize {
self.header.size() +
// take into account capacity
self.body.iter().map(TransactionSigned::size).sum::<usize>() + self.body.capacity() * std::mem::size_of::<TransactionSigned>() +
self.ommers.iter().map(Header::size).sum::<usize>() + self.ommers.capacity() * std::mem::size_of::<Header>() +
self.withdrawals.as_ref().map(|w| w.iter().map(Withdrawal::size).sum::<usize>() + w.capacity() * std::mem::size_of::<Withdrawal>()).unwrap_or(std::mem::size_of::<Option<Vec<Withdrawal>>>())
}
/// Calculates the total gas used by blob transactions in the sealed block.
pub fn blob_gas_used(&self) -> u64 {
self.blob_transactions().iter().filter_map(|tx| tx.blob_gas_used()).sum()
}
}
impl From<SealedBlock> for Block {
fn from(block: SealedBlock) -> Self {
block.unseal()
}
}
impl Deref for SealedBlock {
type Target = SealedHeader;
fn deref(&self) -> &Self::Target {
&self.header
}
}
#[cfg(any(test, feature = "test-utils"))]
impl std::ops::DerefMut for SealedBlock {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.header
}
}
/// Sealed block with senders recovered from transactions.
#[derive(Debug, Clone, PartialEq, Eq, Default)]
pub struct SealedBlockWithSenders {
/// Sealed block
pub block: SealedBlock,
/// List of senders that match transactions from block.
pub senders: Vec<Address>,
}
impl SealedBlockWithSenders {
/// New sealed block with sender. Return none if len of tx and senders does not match
pub fn new(block: SealedBlock, senders: Vec<Address>) -> Option<Self> {
(!block.body.len() != senders.len()).then_some(Self { block, senders })
}
/// Split Structure to its components
pub fn into_components(self) -> (SealedBlock, Vec<Address>) {
(self.block, self.senders)
}
}
impl Deref for SealedBlockWithSenders {
type Target = SealedBlock;
fn deref(&self) -> &Self::Target {
&self.block
}
}
#[cfg(any(test, feature = "test-utils"))]
impl std::ops::DerefMut for SealedBlockWithSenders {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.block
}
}
/// A response to `GetBlockBodies`, containing bodies if any bodies were found.
///
/// Withdrawals can be optionally included at the end of the RLP encoded message.
#[derive_arbitrary(rlp, 10)]
#[derive(
Clone, Debug, PartialEq, Eq, Default, Serialize, Deserialize, RlpEncodable, RlpDecodable,
)]
#[rlp(trailing)]
pub struct BlockBody {
/// Transactions in the block
#[cfg_attr(
any(test, feature = "arbitrary"),
proptest(
strategy = "proptest::collection::vec(proptest::arbitrary::any::<TransactionSigned>(), 0..=100)"
)
)]
pub transactions: Vec<TransactionSigned>,
/// Uncle headers for the given block
#[cfg_attr(
any(test, feature = "arbitrary"),
proptest(
strategy = "proptest::collection::vec(proptest::arbitrary::any::<Header>(), 0..=2)"
)
)]
pub ommers: Vec<Header>,
/// Withdrawals in the block.
#[cfg_attr(
any(test, feature = "arbitrary"),
proptest(
strategy = "proptest::option::of(proptest::collection::vec(proptest::arbitrary::any::<Withdrawal>(), 0..=16))"
)
)]
pub withdrawals: Option<Vec<Withdrawal>>,
}
impl BlockBody {
/// Create a [`Block`] from the body and its header.
pub fn create_block(&self, header: Header) -> Block {
Block {
header,
body: self.transactions.clone(),
ommers: self.ommers.clone(),
withdrawals: self.withdrawals.clone(),
}
}
/// Calculate the transaction root for the block body.
pub fn calculate_tx_root(&self) -> B256 {
crate::proofs::calculate_transaction_root(&self.transactions)
}
/// Calculate the ommers root for the block body.
pub fn calculate_ommers_root(&self) -> B256 {
crate::proofs::calculate_ommers_root(&self.ommers)
}
/// Calculate the withdrawals root for the block body, if withdrawals exist. If there are no
/// withdrawals, this will return `None`.
pub fn calculate_withdrawals_root(&self) -> Option<B256> {
self.withdrawals.as_ref().map(|w| crate::proofs::calculate_withdrawals_root(w))
}
/// Calculate all roots (transaction, ommers, withdrawals) for the block body.
pub fn calculate_roots(&self) -> BlockBodyRoots {
BlockBodyRoots {
tx_root: self.calculate_tx_root(),
ommers_hash: self.calculate_ommers_root(),
withdrawals_root: self.calculate_withdrawals_root(),
}
}
/// Calculates a heuristic for the in-memory size of the [BlockBody].
#[inline]
pub fn size(&self) -> usize {
self.transactions.iter().map(TransactionSigned::size).sum::<usize>() +
self.transactions.capacity() * std::mem::size_of::<TransactionSigned>() +
self.ommers.iter().map(Header::size).sum::<usize>() +
self.ommers.capacity() * std::mem::size_of::<Header>() +
self.withdrawals
.as_ref()
.map(|w| {
w.iter().map(Withdrawal::size).sum::<usize>() +
w.capacity() * std::mem::size_of::<Withdrawal>()
})
.unwrap_or(std::mem::size_of::<Option<Vec<Withdrawal>>>())
}
}
/// A struct that represents roots associated with a block body. This can be used to correlate
/// block body responses with headers.
#[derive(Clone, Debug, PartialEq, Eq, Default, Serialize, Deserialize, Hash)]
pub struct BlockBodyRoots {
/// The transaction root for the block body.
pub tx_root: B256,
/// The ommers hash for the block body.
pub ommers_hash: B256,
/// The withdrawals root for the block body, if withdrawals exist.
pub withdrawals_root: Option<B256>,
}
#[cfg(test)]
mod test {
use super::{BlockId, BlockNumberOrTag::*, *};
use crate::hex_literal::hex;
use alloy_rlp::{Decodable, Encodable};
use reth_rpc_types::HexStringMissingPrefixError;
use std::str::FromStr;
/// Check parsing according to EIP-1898.
#[test]
fn can_parse_blockid_u64() {
let num = serde_json::json!(
{"blockNumber": "0xaf"}
);
let id = serde_json::from_value::<BlockId>(num);
assert_eq!(id.unwrap(), BlockId::from(175));
}
#[test]
fn can_parse_block_hash() {
let block_hash =
B256::from_str("0xd4e56740f876aef8c010b86a40d5f56745a118d0906a34e69aec8c0db1cb8fa3")
.unwrap();
let block_hash_json = serde_json::json!(
{ "blockHash": "0xd4e56740f876aef8c010b86a40d5f56745a118d0906a34e69aec8c0db1cb8fa3"}
);
let id = serde_json::from_value::<BlockId>(block_hash_json).unwrap();
assert_eq!(id, BlockId::from(block_hash,));
}
#[test]
fn can_parse_block_hash_with_canonical() {
let block_hash =
B256::from_str("0xd4e56740f876aef8c010b86a40d5f56745a118d0906a34e69aec8c0db1cb8fa3")
.unwrap();
let block_id = BlockId::Hash(RpcBlockHash::from_hash(block_hash, Some(true)));
let block_hash_json = serde_json::json!(
{ "blockHash": "0xd4e56740f876aef8c010b86a40d5f56745a118d0906a34e69aec8c0db1cb8fa3", "requireCanonical": true }
);
let id = serde_json::from_value::<BlockId>(block_hash_json).unwrap();
assert_eq!(id, block_id)
}
#[test]
fn can_parse_blockid_tags() {
let tags =
[("latest", Latest), ("finalized", Finalized), ("safe", Safe), ("pending", Pending)];
for (value, tag) in tags {
let num = serde_json::json!({ "blockNumber": value });
let id = serde_json::from_value::<BlockId>(num);
assert_eq!(id.unwrap(), BlockId::from(tag))
}
}
#[test]
fn repeated_keys_is_err() {
let num = serde_json::json!({"blockNumber": 1, "requireCanonical": true, "requireCanonical": false});
assert!(serde_json::from_value::<BlockId>(num).is_err());
let num =
serde_json::json!({"blockNumber": 1, "requireCanonical": true, "blockNumber": 23});
assert!(serde_json::from_value::<BlockId>(num).is_err());
}
/// Serde tests
#[test]
fn serde_blockid_tags() {
let block_ids = [Latest, Finalized, Safe, Pending].map(BlockId::from);
for block_id in &block_ids {
let serialized = serde_json::to_string(&block_id).unwrap();
let deserialized: BlockId = serde_json::from_str(&serialized).unwrap();
assert_eq!(deserialized, *block_id)
}
}
#[test]
fn serde_blockid_number() {
let block_id = BlockId::from(100u64);
let serialized = serde_json::to_string(&block_id).unwrap();
let deserialized: BlockId = serde_json::from_str(&serialized).unwrap();
assert_eq!(deserialized, block_id)
}
#[test]
fn serde_blockid_hash() {
let block_id = BlockId::from(B256::default());
let serialized = serde_json::to_string(&block_id).unwrap();
let deserialized: BlockId = serde_json::from_str(&serialized).unwrap();
assert_eq!(deserialized, block_id)
}
#[test]
fn serde_blockid_hash_from_str() {
let val = "\"0x898753d8fdd8d92c1907ca21e68c7970abd290c647a202091181deec3f30a0b2\"";
let block_hash: B256 = serde_json::from_str(val).unwrap();
let block_id: BlockId = serde_json::from_str(val).unwrap();
assert_eq!(block_id, BlockId::Hash(block_hash.into()));
}
#[test]
fn serde_rpc_payload_block_tag() {
let payload = r#"{"method":"eth_call","params":[{"to":"0xebe8efa441b9302a0d7eaecc277c09d20d684540","data":"0x45848dfc"},"latest"],"id":1,"jsonrpc":"2.0"}"#;
let value: serde_json::Value = serde_json::from_str(payload).unwrap();
let block_id_param = value.pointer("/params/1").unwrap();
let block_id: BlockId = serde_json::from_value::<BlockId>(block_id_param.clone()).unwrap();
assert_eq!(BlockId::Number(BlockNumberOrTag::Latest), block_id);
}
#[test]
fn serde_rpc_payload_block_object() {
let example_payload = r#"{"method":"eth_call","params":[{"to":"0xebe8efa441b9302a0d7eaecc277c09d20d684540","data":"0x45848dfc"},{"blockHash": "0xd4e56740f876aef8c010b86a40d5f56745a118d0906a34e69aec8c0db1cb8fa3"}],"id":1,"jsonrpc":"2.0"}"#;
let value: serde_json::Value = serde_json::from_str(example_payload).unwrap();
let block_id_param = value.pointer("/params/1").unwrap().to_string();
let block_id: BlockId = serde_json::from_str::<BlockId>(&block_id_param).unwrap();
let hash =
B256::from_str("0xd4e56740f876aef8c010b86a40d5f56745a118d0906a34e69aec8c0db1cb8fa3")
.unwrap();
assert_eq!(BlockId::from(hash), block_id);
let serialized = serde_json::to_string(&BlockId::from(hash)).unwrap();
assert_eq!("{\"blockHash\":\"0xd4e56740f876aef8c010b86a40d5f56745a118d0906a34e69aec8c0db1cb8fa3\"}", serialized)
}
#[test]
fn serde_rpc_payload_block_number() {
let example_payload = r#"{"method":"eth_call","params":[{"to":"0xebe8efa441b9302a0d7eaecc277c09d20d684540","data":"0x45848dfc"},{"blockNumber": "0x0"}],"id":1,"jsonrpc":"2.0"}"#;
let value: serde_json::Value = serde_json::from_str(example_payload).unwrap();
let block_id_param = value.pointer("/params/1").unwrap().to_string();
let block_id: BlockId = serde_json::from_str::<BlockId>(&block_id_param).unwrap();
assert_eq!(BlockId::from(0u64), block_id);
let serialized = serde_json::to_string(&BlockId::from(0u64)).unwrap();
assert_eq!("\"0x0\"", serialized)
}
#[test]
#[should_panic]
fn serde_rpc_payload_block_number_duplicate_key() {
let payload = r#"{"blockNumber": "0x132", "blockNumber": "0x133"}"#;
let parsed_block_id = serde_json::from_str::<BlockId>(payload);
parsed_block_id.unwrap();
}
#[test]
fn serde_rpc_payload_block_hash() {
let payload = r#"{"blockHash": "0xd4e56740f876aef8c010b86a40d5f56745a118d0906a34e69aec8c0db1cb8fa3"}"#;
let parsed = serde_json::from_str::<BlockId>(payload).unwrap();
let expected = BlockId::from(
B256::from_str("0xd4e56740f876aef8c010b86a40d5f56745a118d0906a34e69aec8c0db1cb8fa3")
.unwrap(),
);
assert_eq!(parsed, expected);
}
#[test]
fn encode_decode_raw_block() {
let bytes = hex!("f90288f90218a0fe21bb173f43067a9f90cfc59bbb6830a7a2929b5de4a61f372a9db28e87f9aea01dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd40d49347940000000000000000000000000000000000000000a061effbbcca94f0d3e02e5bd22e986ad57142acabf0cb3d129a6ad8d0f8752e94a0d911c25e97e27898680d242b7780b6faef30995c355a2d5de92e6b9a7212ad3aa0056b23fbba480696b65fe5a59b8f2148a1299103c4f57df839233af2cf4ca2d2b90100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000008003834c4b408252081e80a00000000000000000000000000000000000000000000000000000000000000000880000000000000000842806be9da056e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421f869f86702842806be9e82520894658bdf435d810c91414ec09147daa6db624063798203e880820a95a040ce7918eeb045ebf8c8b1887ca139d076bda00fa828a07881d442a72626c42da0156576a68e456e295e4c9cf67cf9f53151f329438916e0f24fc69d6bbb7fbacfc0c0");
let bytes_buf = &mut bytes.as_ref();
let block = Block::decode(bytes_buf).unwrap();
let mut encoded_buf = Vec::new();
block.encode(&mut encoded_buf);
assert_eq!(bytes[..], encoded_buf);
}
#[test]
fn serde_blocknumber_non_0xprefix() {
let s = "\"2\"";
let err = serde_json::from_str::<BlockNumberOrTag>(s).unwrap_err();
assert_eq!(err.to_string(), HexStringMissingPrefixError::default().to_string());
}
}